抛物线焦点三角形面积公式【点击查看详情】
1、有一边在坐标轴上:S=1/2xa-xb×yc,有一边与坐标轴(x轴)平行:S=1/2xa-xb×yc-ya。(得出结论)。2、抛物线是指平面内到一个定点F(焦点)和一条定直线l(准线)距离相等的点的轨迹。它有许多表示方法,例如参数表示,标准方程表示等等。它在几何光学和力学中有重要的用处。抛物线也是圆锥曲线的一种,即圆锥面与平行于某条母线的平面相截而且得的曲线。(原因解释)。3、抛物线在合适的坐标变换下,也可看成二次函数图像。(内容延伸)。抛物线焦点三角形面积公式。P?/2Sina。任意抛物线焦点F作抛物线的弦,与抛物线交于A、B两点,分别过A、B两点做抛物线的切线l1,l2相交于P点。那么△PAB称作阿基米德三角形。该三角形满足以下特性。1、P点必在抛物线的准线上。