视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
操作python实现npy格式文件转换为txt文件
2020-11-02 18:29:48 责编:小采
文档

如下代码会将npy的格式数据读出,并且输出来到控制台:

import numpy as np
 
##设置全部数据,不输出省略号 
import sys
np.set_printoptions(threshold=sys.maxsize)
 
boxes=np.load('./input_output/boxes.npy')
print(boxes)
np.savetxt('./input_output/boxes.txt',boxes,fmt='%s',newline='
')
print('---------------------boxes--------------------------')

如下代码实现npy格式文件转换为txt,并且保存到当前目录相同文件名

实现转换整个文件夹下面多个文件:

import os
import numpy as np
path='./input_output' #一个文件夹下多个npy文件,
txtpath='./input_output'
namelist=[x for x in os.listdir(path)]
for i in range( len(namelist) ):
 datapath=os.path.join(path,namelist[i]) #specific address
 print(namelist[i])
 data = np.load(datapath).reshape([-1, 2]) # (39, 2)
 np.savetxt('%s/%s.txt'%(txtpath,namelist[i]),data)
print ('over')
import os
import numpy as np
path='./input_output' #一个文件夹下多个npy文件
txtpath='./input_output'
namelist=[x for x in os.listdir(path)]
for i in range( len(namelist) ):
 datapath=os.path.join(path,namelist[i]) #specific address
 print(namelist[i])
 #data = np.load(datapath).reshape([-1, 2]) # (39, 2)
 input_data = np.load(datapath) # (39, 2)
 data = input_data.reshape(1, -1)
 np.savetxt('%s/%s.txt'%(txtpath,namelist[i]),data)
print ('over')

同样的代码,实现读取单个npy文件,读取并且存储为txt :

import numpy as np
input_data = np.load(r"C:	est.npy")
print(input_data.shape)
data = input_data.reshape(1,-1)
print(data.shape)
print(data)
np.savetxt(r"C:	est.txt",data,delimiter=',')

修改pycharm的控制台的buffer大小:

如果你是用pycharm作为Python的编辑器,那么控制台的buf默认为1024,如果输出数据太多,需要修改buff大小才能让

全部数据输出,修改方法:

找到 pycharm 安装目录的 bin 目录下 idea.properties 文件, 修改 idea.cycle.buffer 值,原来默认为 1024

#--------------------------------------------------------------------- # This option controls console cyclic buffer: keeps the console output size not higher than the specified buffer size (Kb). # Older lines are deleted. In order to disable cycle buffer use idea.cycle.buffer.size=disabled #--------------------------------------------------------------------- idea.cycle.buffer.size=102400

补充知识:读取npy格式的文件

npy文件保存的是网络的权重

问题:Ubuntu环境下用gedit打开npy文件,是这样的,根本看不了内容

解决方法:编写如下代码,使解码后的文件内容输出在控制台

import numpy as np
context = np.load('E:/KittiSeg_pretrained0/vgg16.npy',encoding="latin1")
print(context)

文件位置依据自己的存放位置进行修改

运行代码输出结果为

{'conv1_2': [array([[[[ 1.66219279e-01, 1.42701820e-01, -4.02113283e-03, ...,
 6.18828237e-02, -1.74057148e-02, -3.004431e-02],
 [ 9.46945231e-03, 3.87477316e-03, 5.08365929e-02, ...,
 -2.77981739e-02, 1.71373668e-03, 6.82722731e-03],
 [ 6.32681847e-02, 2.12877709e-02, -1.63465310e-02, ...,
 8.80054955e-04, 6.68104272e-03, -1.41139806e-03],
 ...,
 [ 3.47490981e-03, 8.47019628e-02, -4.07223180e-02, ...,
 -1.13523193e-02, -7.498486e-03, 3.19077494e-03],
 [ 5.97234145e-02, 4.97663505e-02, -3.23118735e-03, ...,
 1.43114366e-02, 3.03175431e-02, -4.23925705e-02],
 [ 1.33459672e-01, 4.95484173e-02, -1.78808011e-02, ...,
 2.25385167e-02, 3.02020740e-02, -2.17075031e-02]],

 [[ 2.12007999e-01, 2.101274e-02, -1.47626130e-02, ...,
 2.29580477e-02, 1.23102348e-02, -3.08422819e-02],
 [-2.62175221e-03, 7.42094172e-03, 6.74030930e-02, ...,
 -3.06594316e-02, 1.80578313e-03, 4.27369215e-03],
 [ 2.27197763e-02, -1.07841045e-02, -1.31095545e-02, ...,
 -1.15751950e-02, 4.18359675e-02, -1.922685e-03],
 ...,
 [-2.70304317e-03, 7.41161704e-02, -3.32262330e-02, ...,
 -1.10277236e-02, 1.39831286e-02, 5.34419343e-03],
 [-3.20506282e-02, -2.40584910e-02, -4.52397857e-03, ...,
 -6.040424e-03, 2.01962605e-01, -5.04491515e-02],
 [ 1.68114193e-02, -2.33167298e-02, -1.40886130e-02, ...,
 -7.79278344e-03, 1.28428593e-01, -2.58184522e-02]],

 [[-5.91698708e-03, -2.26223674e-02, 4.88128467e-03, ...,
 4.13784146e-04, -4.84175496e-02, 1.63675251e-03],
 [-3.93767562e-03, 9.073973e-03, 5.36517277e-02, ...,
 -2.56106984e-02, -4.17886395e-03, 2.47476017e-03],
 [-3.070022e-02, -1.09781921e-02, -3.690954e-03, ...,
 -1.19221993e-02, -1.39777903e-02, 8.52933805e-03],
 ...,
 ..........................................

相关学习推荐:python视频教程

下载本文
显示全文
专题