视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
数列有下界是什么概念
2023-09-09 11:45:24 责编:小OO
文档


有界数列,是数学领域的定理,是指任一项的绝对值都小于等于某一正数的数列。有界数列是指数列中的每一项均不超过一个固定的区间,其中分上界和下界。

若数列{Xn}满足:对一切n 有Xn≤M(其中M是与n无关的常数) 称数列{Xn}上有界(有上界)并称M是他的一个上界。

对一切n 有Xn≥m(其中m是与n无关的常数)称数列{Xn}下有界(有下界)并称m是他的一个下界。一个数列{Xn},若既有上界又有下界,则称之为有界数列。显然数列{Xn}有界的一个等价定义是:存在正实数X,使得数列的所有项都满足|Xn|≤X,n=1,2,3,……。

数列有下界是什么概念

1)有下界:n>;=0,0即为数列{n}的下界(2)无上界:对任意大的正数M,取n=M的整数部分+1,则n>;M,可知M不是上界,因此数列{n}无上界。

下载本文
显示全文
专题