视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
基于单片机的电风扇温控调速系统设计
2025-09-24 14:10:35 责编:小OO
文档
基于单片机的电风扇温控调速系统设计

摘要:

本设计为一种温控电风扇调速系统,具有灵敏的温度测试和显示功能,系统以STCC52 单片机作为控制平台对风扇转速进行控制,可选择由用户选择手动调速或自动调速。在手动调速时自动调速系统不工作,在自动调速时由系统自动检测外界温度值并对电风扇转速做出相应调整,当温度低于温度设定的最低值时,控制电风扇自动关闭,当温度升到超过所设定的最大值时自动调速到最高挡,控制风速大小随外界温度而定。

关键词:

自动控制  单片机  DS18B20  电风扇

引言:

随着人们生活水平及科技水平的不断提高,现在家用电器在款式、功能等方面日益求精,并朝着健康、安全、多功能、节能等方向发展。过去的电器不断的显露出其不足之处。电风扇作为家用电器的一种,同样存在类似的问题。

现在电风扇的现状:大部分只有手动调速,再加上一个定时器,功能单一。

夏秋交替时节,白天温度依旧很高,电风扇应高转速、大风量,使人感到清凉;到了晚上,气温降低,当人入睡后,应该逐步减小转速,以免使人感冒。虽然电风扇都有调节不同档位的功能,但必须要人手动换档,睡着了就为力了,而普遍采用的定时器关闭的做法,一方面是定时时间长短有,一般是一两个小时;另一方面可能在一两个小时后气温依旧没有降低很多,而风扇就关闭了,使人在睡梦中热醒而不得不起床重新打开风扇,增加定时器时间,非常麻烦,而且可能多次定时后最后一次定时时间太长,在温度降低以后风扇依旧继续吹风,使人感冒;第三方面是只有简单的到了定时时间就关闭风扇电源的单一功能,不能满足气温变化对风扇风速大小的不同要求。

之所以会产生这些隐患的根本原因是:缺乏对环境温度的检测。

为解决上述问题,我们设计了这套电风扇温控调速系统。本系统采用高精度集成温度传感器DS18B20,用单片机控制,能做到实时温度显示,根据外界环境的温度自动作出小风、大风、关闭动作,灵敏度度高,动作准确。

1.系统总体功能描述及系统结构介绍

本设计是以STCC52单片机为控制中心,主要通过温度传感器DS18B20得到的温度以及内部定时器设定时间长短来控制电风扇的开关及转速的变化。

本系统电路小巧方便,实用性、通用性强。当要用手动调速时只需将执行设备从电风扇调速开关上取下即可由人工控制;在晚上需要选择自动调速时将调速设备安装在调速开关上就可正常使用。

在自动调速时,随着温度传感器检测到外界温度的变化,单片机通过判断并发出指令控制由继电器和直流电机组成的执行模块,改变电风扇调速开关的旋转方向,使电风扇转速做出相应的调整。当检测到外界温度低于最低预设值时,单片机发出关断指令将电风扇关闭,单片机处于休眠状态,当检测到外界温度升高时,系统将再次工作将电风扇打开到相应转速。

为做到实用、功耗低等特性,本系统摒弃了以往实时检测的弊端,采用每十分钟检测并控制调整一次的间歇式工作模式,大大延长了系统的工作寿命。

系统总体结构框图如图1所示,主要分为:检测输入、控制处理、温度显示及执行操作4大功能模块。

图1  系统框图

2.功能模块硬件简介与实现

系统主要部件包括DS18B20温度传感器、STCC52单片机、四位LED数码管、继电器、直流电动机和风扇。辅助元件包括电阻、晶振、电源、电容、二极管、三极管和开关等。

2.1温度传感器

2.1.1温度传感器DS18B20简介

新型数字温度传感器DS18B20具有体积更小、精度更高、适用电压更宽、采用一线总线,在实际应用中取得了良好的测温效果,其管脚排列如图2所示,DQ 为数字信号端,GND 为电源地,VDD 为电源输入端。

DS18B20的主要特性:

(1)独特的单线接口方式,DS18B20在与微处理器连接时仅需要一条口线即可实现微处理器与DS18B20的双向通讯。

(2)测温温范围-55℃~+125℃

(3)最高分辨率为0.0625℃。

2.1.2 DS18B20的一般操作过程

(1)、初始化;

(2)、跳过ROM(命令:CCH);

(3)、温度变换(命令:44H);

(4)、读暂存存储器(命令:BEH);

注:每次读取温度都要经过上面四个过程。

图2 DS18B20外形及管脚

2.2数码管显示电路

本系统的显示电路为4个八段共阴极数码管,共阴极数码管是将八段发光二极管封装在一起且二极管的阴极连在一起,原理图如图3所示,公共端接低电平,其它八个端口高电平点亮相应的二极管,低电平相反。

    

图3 共阴极数码管原理图

2.3继电器控制电路

2.3.1继电器简介

继电器是一种电子控制器件,它具有控制系统(又称输入回路)和被控制系统(又称输出回路),通常应用于自动控制电路中,它实际上是用较小的电流去控制较大电流的一种“自动开关”。故在电路中起着自动调节、安全保护、转换电路等作用。

它有几个重要指标:

1、额定工作电压:正常工作时线圈所需要的电压。

2、直流电阻:继电器中线圈的直流电阻。

3、吸合电流:继电器能够产生吸合动作的最小电流。

4、释放电流:继电器产生释放动作的最大电流。

5、触点切换电压和电流:继电器允许加载的电压和电流。

2.3.2继电器驱动电路设计及工作原理简介

采用晶闸管也可以用于小电流控制大电流电路,但是其控制电路比较复杂,而采用继电器其控制电路就比较简单,且具有电气隔离作用。虽然其响应速度没有晶闸管快但在低频情况下采用继电器控制电路较为方便。其控制电路图如下4所示:

图4 继电器开关控制电路原理图

电路工作原理简介:当单片机控制端口为高电平时,三极管导通继电器吸合,常闭触电断开,常开触点闭合。当控制端口为低电平时三极管关断,继电器线圈通过二极管放电并断开,常闭、常开触电复位。

2.4 STCC52 单片机简介

STCC52 是一种带4K字节闪存可编程可擦除只读存储器(FPEROM)256B片内RAM的低电压,高性能CMOS8 位微处理器。该器件采用ATMEL 高密度非易失存储器制造技术制造,与工业标准的MCS-51 指令集和输出管脚相兼容。由于将多功能8 位CPU 和闪烁存储器组合在单个芯片中,ATMEL 的ATC52 是一种高效微控制器,为很多嵌入式控制系统提供了一种灵活性高且价廉的方案。

STCC52单片机管脚如图5所示。

图5  STCC52单片机管脚

3 系统的总电路原理图介绍

本系统总电路图如图6所示,电路中温度传感器DS18B20通过P2^0与单片机通信;单片机的P0和P1口作为数码管电路输出;Q1、Q2、Q3三个继电器和电机组成执行电路,单片机的P2^2,P2^3,P2^4分别控制Q1、Q2、Q3,管脚为高电平时继电器吸合,当电机正转时需要Q1吸合,当电机反转时需要Q1、Q2、Q3同时吸合,通过控制继电器吸合时间来控制电机转动角度,由于电机和电风扇旋钮同轴相连,从而确定了电风扇旋钮的转动角度,达到控制电风扇转速的目的。

图6  总电路原理图

4.软件设计与实现

4.1整体设计思路介绍

软件设计整体思路:主程序开始部分进行一些初始化以及温度的读取和显示;定时器0进行继电器吸合时间控制、休眠时间控制等相关操作;在显示方面,在休眠期显示温度不改变,直至下一次温度数据在此检测有变化才进行重新刷新,从而达到显示温度与控制的电风扇转速相对应的目的。

4.2主程序流程图

图7  总程序流程图下载本文

显示全文
专题