视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
[全]高等代数-考研真题详解
2025-09-24 21:06:53 责编:小OO
文档
高等代数-考研真题详解

1.设Q是有理数域,则P={α+βi|α,β∈Q}也是数域,其中

.(  )[南京大学研]

【答案】对查看答案

【解析】首先0,1∈P,故P非空;其次令a=α1+β1i,b=α2+β2i其中α1,α2,β1,β2为有理数,故

a±b=(α1+β1i)±(α2+β2i)=(α1±α2)+(β1±β2)i∈P

ab=(α1+β1i)(α2+β2i)=(α1α2-β1β2)+(α1β2+α2β1)i∈P

又令c=α3+β3i,d=α4+β4i,其中α3,α4,β3,β4为有理数且d≠0,即α4≠0,β4≠0,有

综上所述得P为数域.

2.设f(x)是数域P上的多项式,a∈P,如果a是f(x)的三阶导数f‴(x)的k重根(k≥1)并且f(a)=0,则a是f(x)的k+3重根.(  )[南京大学研]

【答案】错查看答案

【解析】反例是f(x)=(x-a)k+3+(x-a)2,这里f(a)=0,并且f‴(x)=(k+3)(k+2)(k+1)(x-a)k满足a是f(x)的三阶导数f‴(x)的k重根(k≥1).

3.设f(x)=x4+4x-3,则f(x)在有理数域上不可约.(  )[南京大学研]

【答案】对查看答案

【解析】令x=y+1,则f(y)=y4+4y3+6y2+8y+2,故由艾森斯坦因判别法知,它在有理数域上不可约.

二、计算题

1.f(x)=x3+6x2+3px+8,试确定p的值,使f(x)有重根,并求其根.[清华大学研]

解:f′(x)=3(x2+4x+p).且(f(x),f′(x))≠1,则

(1)当p=4时,有(f(x),f′(x))=x2+4x+4

所以x+2是f(x)的三重因式,即f(x)(x+2)3,这时f(x)的三个根为-2,-2,-2.

(2)若p≠4,则继续辗转相除,即

当p=-5时,有(f(x),f′(x))=x-1

即x-1是f(x)的二重因式,再用(x-1)2除f(x)得商式x+8.故

f(x)=x3+bx2-15x+8=(x-1)2(x+8)

这时f(x)的三个根为1,1,-8.

2.假设f1(x)与f2(x)为次数不超过3的首项系数为1的互异多项式,且x4+x2+1整除f1(x3)+x4f2(x3),试求f1(x)与f2(x)的最大公因式.[上海交通大学研]

解:设6次单位根分别为

由于x6-1=(x2)3-1=(x2-1)(x4+x2+1),所以ε1,ε2,ε4,ε5是x4+x2+1的4个根.

由于ε13=ε53=-1,且x4+x2+1∣f1(x3)+x4f2(x3),所以,分别将ε1,ε5代入f1(x3)+x4f2(x3)可得

从而f1(-1)=f2(-1)=0

即x+1是f1(x)与f2(x)的一个公因式.

同理,将ε2,ε4代入f1(x3)+x4f2(x3)可得f1(1)=f2(1)=0,即x-1是f1(x)与f2(x)的一个公因式.

所以(x-1)(x+1)是f1(x)与f2(x)的一个公因式.

又因为f1(x),f2(x)为次数不超过3的首项系数为1的互异多项式,所以(f(x),g(x))=x2-1

三、证明题

1.设不可约的有理分数p/q是整系数多项式f(x)=a0xn+a1xn-1+…+an-1x+an的根,证明:q∣a0,p∣an[华中科技大学研]

证明:因为p/q是f(x)的根,所以(x-p/q)∣f(x),从而(qx-p)∣f(x).又因为p,q互素,所以qx-p是本原多项式[即多项式的系数没有异于±l的公因子],且

f(x)=(qx-p)(bn-1xn-1+…+b0,bi∈z

比较两边系数,得a0=qbn-1,an=-pb0⇒q∣a0,p∣an

2.设f(x)和g(x)是数域P上两个一元多项式,k为给定的正整数.求证:f(x)∣g(x)的充要条件是fk(x)∣gk(x)[浙江大学研]

证明:(1)先证必要性.设f(x)∣g(x),则g(x)=f(x)h(x),其中h(x)∈P(x),两边k次方得gk(x)=fk(x)hk(x),所以fk(x)∣gk(x)

(2)再证充分性.设fk(x)∣gk(x)

(i)若f(x)=g(x)=0,则f(x)∣g(x)

(ii)若f(x),g(x)不全为0,则令d(x)=(f(x),g(x)),那么

f(x)=d(x)f1(x),g(x)=d(x)g1(x),且(f1(x),g1(x))=1①

所以fk(x)=dk(x)f1k(x),gk(x)=dk(x)g1k(x)

因为fk(x)∣gk(x),所以存在h(x)∈P[x](x),使得gk(x)=fk(x)·h(x)

所以dk(x)g1k(x)=dk(x)f1k(x)·h(x),两边消去dk(x),得g1k(x)=f1k(x)·h(x)②

由②得f1(x)∣g1k(x),但(f1(x),g1(x))=1,所以f1(x)∣g1k-1(x)

这样继续下去,有f1(x)∣g1(x),但(f1(x),g1(x))=1

故fl(x)=c,其中c为非零常数.下载本文

显示全文
专题