视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
高中数学三角函数知识点总结实用版
2025-09-24 20:45:36 责编:小OO
文档
高中数学第四章-三角函数

考试内容:

数学探索©版权所有www.delve.cn角的概念的推广.弧度制.

数学探索©版权所有www.delve.cn任意角的三角函数.单位圆中的三角函数线.同角三角函数的基本关系式.正弦、余弦的诱导公式.

数学探索©版权所有www.delve.cn两角和与差的正弦、余弦、正切.二倍角的正弦、余弦、正切.

数学探索©版权所有www.delve.cn正弦函数、余弦函数的图像和性质.周期函数.函数y=Asin(ωx+φ)的图像.正切函数的图像和性质.已知三角函数值求角.

数学探索©版权所有www.delve.cn正弦定理.余弦定理.斜三角形解法.

数学探索©版权所有www.delve.cn考试要求:

数学探索©版权所有www.delve.cn(1)理解任意角的概念、弧度的意义能正确地进行弧度与角度的换算.

数学探索©版权所有www.delve.cn(2)掌握任意角的正弦、余弦、正切的定义;了解余切、正割、余割的定义;掌握同角三角函数的基本关系式;掌握正弦、余弦的诱导公式;了解周期函数与最小正周期的意义.

数学探索©版权所有www.delve.cn(3)掌握两角和与两角差的正弦、余弦、正切公式;掌握二倍角的正弦、余弦、正切公式.

数学探索©版权所有www.delve.cn(4)能正确运用三角公式,进行简单三角函数式的化简、求值和恒等式证明.

数学探索©版权所有www.delve.cn(5)理解正弦函数、余弦函数、正切函数的图像和性质,会用“五点法”画正弦函数、余弦函数和函数y=Asin(ωx+φ)的简图,理解A.ω、φ的物理意义.

数学探索©版权所有www.delve.cn(6)会由已知三角函数值求角,并会用符号arcsinx\\arc-cosx\\arctanx表示.

数学探索©版权所有www.delve.cn(7)掌握正弦定理、余弦定理,并能初步运用它们解斜三角形.

数学探索©版权所有www.delve.cn(8)“同角三角函数基本关系式:sin2α+cos2α=1,sinα/cosα=tanα,tanα•cosα=1”.

§04. 三角函数  知识要点

1.与(0°≤<360°)终边相同的角的集合(角与角的终边重合):

终边在x轴上的角的集合:

终边在y轴上的角的集合: 

终边在坐标轴上的角的集合: 

终边在y=x轴上的角的集合: 

终边在轴上的角的集合: 

若角与角的终边关于x轴对称,则角与角的关系: 

若角与角的终边关于y轴对称,则角与角的关系: 

若角与角的终边在一条直线上,则角与角的关系: 

角与角的终边互相垂直,则角与角的关系: 

2. 角度与弧度的互换关系:360°=2 180°= 1°=0.01745  1=57.30°=57°18′

注意:正角的弧度数为正数,负角的弧度数为负数,零角的弧度数为零.

、弧度与角度互换公式:  1rad=°≈57.30°=57°18ˊ.     1°=≈0.01745(rad)

3、弧长公式:.       扇形面积公式: 

4、三角函数:设是一个任意角,在的终边上任取(异于原点的)一点P(x,y)P与原点的距离为r,则  ;  ;  ;  ;  ;..

5、三角函数在各象限的符号:(一全二正弦,三切四余弦)

6、三角函数线

   正弦线:MP;   余弦线:OM;    正切线: AT.

7. 三角函数的定义域:

三角函数                 定义域

sinx

cosx

tanx

cotx

secx

cscx

8、同角三角函数的基本关系式:    

    

 

9、诱导公式:

“奇变偶不变,符号看象限”

 三角函数的公式:(一)基本关系

                                             

公式组二                  公式组三

                                                  

公式组四               公式组五               公式组六             

                          

(二)角与角之间的互换

公式组一                                  公式组二

   

   

       

   

              

           

公式组三                    公式组四                                    公式组五

        

   

     

, , ,.

10. 正弦、余弦、正切、余切函数的图象的性质:

(A、>0)

定义域RRR
值域RR
周期性  

奇偶性奇函数偶函数奇函数奇函数当非奇非偶

当奇函数

单调性

上为增函数;上为减函数()

;上为增函数

上为减函数

()

上为增函数()

上为减函数()

上为增函数;

上为减函数()

注意: 与的单调性正好相反;与的单调性也同样相反.一般地,若在上递增(减),则在上递减(增).

与的周期是.

或()的周期.

的周期为2(,如图,翻折无效). 

的对称轴方程是(),对称中心();的对称轴方程是(),对称中心();的对称中心().

当·;·.

与是同一函数,而是偶函数,则

.

函数在上为增函数.(×) [只能在某个单调区间单调递增. 若在整个定义域,为增函数,同样也是错误的].

定义域关于原点对称是具有奇偶性的必要不充分条件.(奇偶性的两个条件:一是定义域关于原点对称(奇偶都要),二是满足奇偶性条件,偶函数:,奇函数:)

奇偶性的单调性:奇同偶反. 例如:是奇函数,是非奇非偶.(定义域不关于原点对称)

奇函数特有性质:若的定义域,则一定有.(的定义域,则无此性质)

不是周期函数;为周期函数();

是周期函数(如图);为周期函数();

的周期为(如图),并非所有周期函数都有最小正周期,例如: 

.

 有.

11、三角函数图象的作法:

1)、几何法:

2)、描点法及其特例——五点作图法(正、余弦曲线),三点二线作图法(正、余切曲线).

3)、利用图象变换作三角函数图象.

三角函数的图象变换有振幅变换、周期变换和相位变换等.

函数y=Asin(ωx+φ)的振幅|A|,周期,频率,相位初相(即当x=0时的相位).(当A>0,ω>0 时以上公式可去绝对值符号),

由y=sinx的图象上的点的横坐标保持不变,纵坐标伸长(当|A|>1)或缩短(当0<|A|<1)到原来的|A|倍,得到y=Asinx的图象,叫做振幅变换或叫沿y轴的伸缩变换.(用y/A替换y)

由y=sinx的图象上的点的纵坐标保持不变,横坐标伸长(0<|ω|<1)或缩短(|ω|>1)到原来的倍,得到y=sinω x的图象,叫做周期变换或叫做沿x轴的伸缩变换.(用ωx替换x)

由y=sinx的图象上所有的点向左(当φ>0)或向右(当φ<0)平行移动|φ|个单位,得到y=sin(x+φ)的图象,叫做相位变换或叫做沿x轴方向的平移.(用x+φ替换x)

由y=sinx的图象上所有的点向上(当b>0)或向下(当b<0)平行移动|b|个单位,得到y=sinx+b的图象叫做沿y轴方向的平移.(用y+(-b)替换y)

由y=sinx的图象利用图象变换作函数y=Asin(ωx+φ)(A>0,ω>0)(x∈R)的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象延x轴量伸缩量的区别。

4、反三角函数:

函数y=sinx,的反函数叫做反正弦函数,记作y=arcsinx,它的定义域是[-1,1],值域是.

函数y=cosx,(x∈[0,π])的反应函数叫做反余弦函数,记作y=arccosx,它的定义域是[-1,1],值域是[0,π].

函数y=tanx,的反函数叫做反正切函数,记作y=arctanx,它的定义域是(-∞,+∞),值域是.

函数y=ctgx,[x∈(0,π)]的反函数叫做反余切函数,记作y=arcctgx,它的定义域是(-∞,+∞),值域是(0,π).

II. 竞赛知识要点

一、反三角函数.

1. 反三角函数:反正弦函数是奇函数,故,(一定要注明定义域,若,没有与一一对应,故无反函数)

注:,,.

反余弦函数非奇非偶,但有,.

注: ,,.

是偶函数,非奇非偶,而和为奇函数.

反正切函数:,定义域,值域(),是奇函数,

, .

注:, .

反余切函数:,定义域,值域(),是非奇非偶.

, .

注: , .

与互为奇函数,同理为奇而与非奇非偶但满足.

正弦、余弦、正切、余切函数的解集:

的取值范围   解集                             的取值范围   解集

①的解集                               ②的解集

>1                                        >1            

=1                  =1   

<1            <1  

③的解集:         ③的解集: 

二、三角恒等式.

组一

组二

组三 三角函数不等式

<<            在上是减函数

若,则下载本文

显示全文
专题