视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
关于MOSFET驱动电阻值的计算
2025-09-24 21:09:03 责编:小OO
文档
关于MOSFET驱动电阻的选择

等效驱动电路:

L为PCB走线电感,根据他人经验其值为直走线1nH/mm,考虑其他走线因素,取L=Length*1(nH/mm)+10(nH),其中Length单位取mm。

Rg为栅极驱动电阻,设驱动信号为12V峰值的方波。

Cgs为MOSFET栅源极电容,不同的管子及不同的驱动电压时会不一样,这儿取1nF。

VL+VRg+VCgs=12V

令驱动电流

得到关于Cgs上的驱动电压微分方程:

用拉普拉斯变换得到变换函数:

这是个3阶系统,当其极点为3个不同实根时是个过阻尼震荡,有两个相同实根时是临界阻尼震荡,当有虚根时是欠阻尼震荡,此时会在MOSFET栅极产生上下震荡的波形,这是我们不希望看到的,因此栅极电阻Rg阻值的选择要使其工作在临界阻尼和过阻尼状态,考虑到参数误差实际上都是工作在过阻尼状态。

根据以上得到,因此根据走线长度可以得到Rg最小取值范围。

分别考虑20mm长和70mm长的走线: L20=30nH,L70=80nH, 则Rg20=8.94Ω,Rg70=17.Ω,

以下分别是电压电流波形:

驱动电压:

驱动电流:

可以看到当Rg比较小时驱动电压上冲会比较高,震荡比较多,L越大越明显,此时会对MOSFET及其他器件性能产生影响。但是阻值过大时驱动波形上升比较慢,当MOSFET有较大电流通过时会有不利影响。

此外也要看到,当L比较小时,此时驱动电流的峰值比较大,而一般IC的驱动电流输出能力都是有一定的,当实际驱动电流达到IC输出的最大值时,此时IC输出相当于一个恒流源,对Cgs线性充电,驱动电压波形的上升率会变慢。电流曲线就可能如左图所示(此时由于电流不变,电感不起作用)。这样可能会对IC的可靠性产生影响,电压波形上升段可能会产生一个小的台阶或毛刺。

    一般IC的PWM OUT输出如左图所示,内部集成了限流电阻Rsource和Rsink,通常Rsource>Rsink,具体数值大小同IC的峰值驱动输出能力有关,可以近似认为R=Vcc/Ipeak。一般IC的驱动输出能力在0.5A左右,因此Rsource在20Ω左右。

    由前面的电压电流曲线可以看到一般的应用中IC的驱动可以直接驱动MOSFET,但是考虑到通常驱动走线不是直线,感量可能会更大,并且为了防止外部干扰,还是要使用Rg驱动电阻进行抑制。考虑到走线分布电容的影响,这个电阻要尽量靠近MOSFET的栅极。

关于Rg、L对于上升时间的影响:(Cgs=1nF,VCgs=0.9*Vdrive)

TR(nS)19492302045229
Rg(ohm)10221001022100
L(nH)303030808080
可以看到L对上升时间的影响比较小,主要还是Rg影响比较大。上升时间可以用2*Rg*Cgs来近似估算,通常上升时间小于导通时间的二十分之一时,MOSFET开关导通时的损耗不致于会太大造成发热问题,因此当MOSFET的最小导通时间确定后Rg最大值也就确定了,一般Rg在取值范围内越小越好,但是考虑EMI的话可以适当取大。

    以上讨论的是MOSFET ON状态时电阻的选择,在MOSFET OFF状态时为了保证栅极电荷快速泻放,此时阻值要尽量小,这也是Rsink    

实际使用中还要考虑MOSFET栅漏极还有个电容Cgd的影响,MOSFET ON时Rg还要对Cgd充电,会改变电压上升斜率,OFF时VCC会通过Cgd向Cgs充电,此时必须保证Cgs上的电荷快速放掉,否则会导致MOSFET的异常导通。下载本文

显示全文
专题