视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
变频器谐波危害及解决
2025-09-24 21:01:04 责编:小OO
文档
变频器谐波危害及解决

摘 要:

  变频器的主电路为典型“交-直-交”变频方式,其整流为三相桥式整流器。由于变频器逆变电路的开关特性,对其供电电源形成了一个典型的非线性负载。变频器的非线性、冲击性的用电方式,输出侧电压、电流、正弦或非完全正弦波含有丰富的谐波,给用电设备带来危害。

  本文从谐波的概念入手,结合变频器的内部结构的相关知识,分析变频器谐波产生的原因及其危害,在此基础上提出了抑制谐波的常用方法.

关键词:

变频器 谐波 危害 抑制

一、 引言:

  采用变频器驱动的电动机系统,因其节能效果显著、调节方便维护简单,而在工业中得到广泛应用,在人们享受它便捷的同时,变频器带来的干扰问题受到越来越多的技术人员关注。世界许多国家都对谐波问题发布了电网谐波的国家标准,由权威机构制定谐波的规定。世界各国所制定的谐波标准大都比较接近。我国国家技术监督局于1993年发布了中华人民共和国国家标准GB/T14549-93《电能质量公用电网谐波》,该标准自1994年3月1日起开始实施。

二、 变频器原理及其谐波的产生

  变频器是工业调速领域中应用较广泛的设备之一,目前已在石化企业大量使用。变频器一般采用是交-直交结构(如图一所示),它是把工频(50HZ)变换成各种频率的交流电源,以实现电机的变速运行的设备。其中控制电路完成对主电路的控制,变频调速装置用于交流异步电动机的调速,调速范围广、节能显著、稳定可靠。

  变频器就是利用这一原理将50Hz的工频电通过整流和逆变转换为频率可调的电源。变频器输入部分为整流电路,输出部分为逆变电路,这些都是由非线性原件组成的,在开断过程中,其输入端和输出端都会产生高次谐波。另外变频器输入端的谐波还会通过输入电源线对公用电网产生影响。

  从结构上来看,变频器有间接变频器和直接变频器之分。目前应用较多的还是间接变频器。间接变频器主电路一般为交-直-交,外部输入380V/50HZ工频电源,经三相桥式不可控整流成直流电压,经滤波电容滤波及大功率晶体管开关元件逆变为频率可调的交流信号。

在电力电子装置大量应有以后,电力电子装置成为最主要的谐波源。

  变频器输入侧产生谐波机理:对于变频器而言,只要是电源侧有整流回路的,都将产生因非线性引起的谐波。以三相桥整流电路为例,交流电网电压为一正弦波,交流输入电流波形为方波,对于这个波形,按傅氏级数可分解为基波和各次谐波,通常含有6m±1(m=1,2,…)次谐波,其中高次谐波干扰电网。单个基波与几个高次谐波组合一起被称为畸波(如图二)。

  在采样控制中有一个重要结论:冲量相等而形状不同载脉冲加在具有惯性环节上时,其效果基本相同。冲量即指窄脉冲的面积。此结论是PWM控制的重要理论基础。把图三a的正弦半波分成N个彼此相连的脉冲所组成的波形。这些脉宽相等,都等于 ,但幅值不等,且脉冲顶部不是水平直线,而是曲线,各脉冲的幅值按正弦规律变化。如果把

  上述脉冲序列用同样数量的等幅而不等宽的矩形脉冲序列代替,使矩形脉冲的中点和相应正弦等分的中点重合,且使矩形脉冲和相应正弦部分面积(冲量)相等,就得到了图三b所示脉冲序列,这就是PWM波形。对于正弦波负半周用同样办法也可以得到PWM波形。像这种把正弦波等效的PWM波形也称为SPWM波形。

  变频器输出侧产生谐波机理:在逆变输出回路中,输出电压和输出电流均有谐波。由于变频器是通过CPU产生6组脉宽可调的SPWM波控制三相的6组功率元件导通/关断,从而形成电压、频率可调的三相输出电压。其输出电压和输出电流是由SPWM波和三角载波的交点产生的,不是标准的正弦波,如电压型变频器,其输出电压波形为方形波,用傅氏级数分解电压方波和电流正弦锯齿波可分析出包含较强的高次谐波成分,高次谐波对设备产生很强的干扰,甚至造成设备不能使用,周围仪器信号失真。谐波产生的根本原因是由于非线性负载所致。当电流流经负载时,与所加的电压不呈线性关系,就形成非正弦电流,从而产生谐波。

三、 谐波的危害

  一般来讲,变频器对容量相对较大的电力系统影响不很明显,而对容量小的系统,谐波产生的干扰就不可忽视,谐波电流和谐波电压的出现,对公用电网是一种污染,它使用电设备所处的环境恶化,给周围的通信系统和公用电网以外的设备带来危害。谐波污染对电力系统的危害严重性主要表现在:

(1)谐波对供电线路产生了附加谐波损耗。由于集肤效应和邻近效应,使线路电阻随频率增加而提高,造成电能的浪费;由于中性线正常时流过电流很小,故其导线较细,当大量的三次谐波电流流过中性线时,会使导线过热、绝缘老化、寿命缩短、损坏甚至发生火灾。

(2)谐波影响各种电气设备的正常工作。对发电机的影响除产生附加功率损耗、发热、机械振动和噪声和过电压;对断路器,当电流波形过零点时,由于谐波的存在可能造成高的di/dt,这将使开断困难,并且延长故障电流的切除时间。

(3)谐波使电网中的电容器产生谐振。工频下,系统装设的各种用途的电容器比系统中的感抗要大得多,不会产生谐振,但谐波频率时,感抗值成倍增加而容抗值成倍减少,这就有可能出现谐振,谐振将放大谐波电流,导致电容器等设备被烧毁。

(4)谐波引起公用电网局部的并联谐振和串联谐振,从而使谐波放大,这就使上述危害大大增加,甚至引起严重事故。

(5)谐波将使继电保护和自动装置出现误动作,并使仪表和电能计量出现较大误差;谐波对其他系统及电力用户危害也很大:如对附近的通信系统产生干扰,轻者出现噪声,降低通信质量,重者丢失信息,使通信系统无法正常工作;影响电子设备工作精度,使精密机械加工的产品质量降低;设备寿命缩短,家用电器工况变坏等。

四、 谐波研究的意义

谐波研究的意义,首先是因为谐波的危害十分严重。各种谐波源产生的谐波给电力系统造成巨大的污染,影响到整个电力系统的运行环境、包括系统本身的广大用户,而且其污染影响的范围很广、距离很远,可能远比一个工厂对大气环境的污染范围还要大、距离还要远。

谐波研究的意义,还在于其对电力电子技术自身发展的影响。电力电子技术是未来科学技术发展的重要支柱。然而,电力电子装置所产生的谐波污染已成为阻碍电子技术发展的重大障碍,它迫使电力电子领域的研究人员必须对谐波问题进行更为有效的研究。

谐波研究更可以上升到从治理环境污染、维护"绿色电网"的角度来认识。对电力系统这个环境来说,无谐波就是"绿色"的主要标志之一。在电力电子技术领域,要求实施"绿色电力电子"的呼声日益高涨。目前,对地球的环境保护已成为全人类的共识。对电力系统谐波污染的治理已成为电工学科技术界所必须解决的问题。谐波研究的意义还在于对电能质量这一概念的理解。

  谐波电压限值、公用电网谐波电压(相电压)的限值见下表

  供电系统中,认为电网的稳态电压波形为共频正弦波,其数学表达式为:

其中:

  电路中,线性无源元件上的电压和电流一般具有比例(u=Ri)、微分 

的关系。正弦周期函数在进行加减乘除和微分、积分的运算时,仍保持正弦函数的特点,所以要求电网尽可能由正弦波形的电源供电。但由于非线性负载的存在,电网电压往往偏离正弦波形而发生畸变。畸变波形可以由一系列不同频率的正弦函数之和来表示: 

将sinω1t项称为基波,其周期与未发生畸变的波形的周期相同,在电网中就是工频电压的周期;其它各项均称为谐波。由于谐波的频率是基波频率的整数倍,所以称sin3ω1t项为三次谐波,sin5ω1t项为五次谐波……。通常将各奇次的谐波统称为奇次谐波,偶次的谐波称为偶次谐波。一般地讲,奇次谐波引起的危害比偶次谐波更大。在平衡的三相系统中,由于对称关系,偶次谐波已经被消除了,只有奇次谐波存在。

但是,以现在的技术水平和经济条件要将产生的高次谐波全部消灭是困难的。当前必须把高次谐波发生侧和受到高次谐波干扰的装置侧协调起来,作为系统的整体实施在经济、技术上是最有效的对策。

五、 谐波的抑制

变频器给人们带来极大的方便、高效率和巨大的经济效益的同时,对电网注入了大量的谐波和无用功,使供电质量不断恶化。另一方面,随着以计算机为代表的大量敏感设备的普及应用,人们对公用电网的供电质量要求越来越高,许多国家和地区已经制定了各自的谐波标准,以供电系统及用电设备的谐波污染。

抑制谐波的总体思路有三个:其一是装置谐波补偿装置来补偿谐波;其二是对电力系统装置本身进行改造,使其不产生谐波,且功率因数可控为1;其三是在电网系统中采用适当的措施来抑制谐波。具体方法有以下几种:

1.选用适当的电抗器。

(1)输入电抗器。在电源与变频器输入侧之间串联交流电抗器(图四),这样可使整流阻抗增大来有效抑制高次谐波电流,减少电源浪涌对变频器的冲击,改善三相电源的不平衡性,提高输入电源的功率因数(提高到0.75-0.85),这样进线电流的波形畸变大约降低30%~50%,是不加电抗器谐波电流的一半左右。

建议在下列情况下使用输入交流电抗器:

a) 变频器所用之处的电源容量与变频器容量之比为10:1以上;

b) 同一电源上接有晶闸管设备或带有开关控制的功率因数补偿装置;

c) 三相电源的电压不平衡度较大(≥3%);

由于交流电抗器体积较大,成本较高,变频器功率>30kW时才考虑配置交流电抗器。

(2)在直流环节串联直流电抗器。直流电抗器串联在直流中间环节母线中(端子+,-之间)。主要是减小输入电流的高次谐波成分,提高输入电源的功率因数(提高到0.95)。此电抗器可与交流电抗器同时使用,变频器功率>30kW时才考虑配置。

  (3)输出电抗器(电机电抗器)。由于电机与变频器之间的电缆存在分布电容,尤其是在电缆距离较长,且电缆较粗时,变频器经逆变输出后调制方波会在电路上产生一定的过电压,使电机无法正常工作,可以通过在变频器和电机间连接输出电抗器来进行(图五)。

2.选用适当滤波器。

  在变频器输入、输出电路中,有许多高频谐波电流,滤波器用于抑制变频器产生的电磁干扰噪声的传导,也可抑制外界无线电干扰以及瞬时冲击、浪涌对变频器的干扰。根据使用位置的不同可以分为输入滤波器和输出滤波器。输入滤波器有2种,线路滤波器和辐射滤波器:

(1)线路滤波器串联在变频器输入侧,由电感线圈组成,通过增大电路的阻抗减小频率较高的谐波电流;在需要使用外控端子控制变频器时,如果控制回路电缆较长,外部环境的干扰有可能从控制回路电缆侵入,造成变频器误动作,此时将线路滤波器串联在控制回路电缆上,可以消除干扰。

(2)辐射滤波器并联在电源与变频器输入侧,由高频电容器组成,可以吸收频率较高具有辐射能量的谐波成分,用于降低无线电噪声。线路滤波器和辐射滤波器同时使用效果更好。

输出滤波器串联在变频器输出侧,由电感线圈组成,可以减小输出电流中的高次谐波成分,抑制变频器输出侧的浪涌电压,同时可以减小电动机由高频谐波电流引起的附加转矩。注意输出滤波器到变频器和电机的接线尽量缩短,滤波器亦应尽量靠近变频器。输出滤波器从结构上分LR滤波器单元和LC滤波器单元两种类型(图六)。

  除传统的LR,LC滤波器还在应用以外,当前抑制谐波的重要趋势是采用有源电力滤波器,它串联或并联于主电路中,实时对电流中高次谐波进行检测,根据检测结果输入与高次谐波成分具有相反相位电流,达到实时补偿谐波电流目的,从而使电网电流只含基波电流。它与无源滤波器相比,具有高度可控性和快速响应性,且可消除与系统阻抗发生谐振危险,但存在容量大,价格高的特点。

  对于工作性质是节能性的(同时有调节作用)大容量的电动机,如酮苯两台132KW的电动机(酮苯泵360和312)。为了改善电机的运行工况,降低发热量,应考虑串联加装电抗器。

  对于工作电流较大(基本运行在额定容量下)的电动机(三催化五台132-165KW电动机),为了减少电机的发热量、降低运行电流,使电气元件的运行可靠度提高(空开、断路器),应串联加装电抗器和滤波器。

  对于类似于酮苯过滤机变频器(酮苯过滤301~313,401~406)这样的小容量、多台安装的变频装置,单独增加滤波设备显然投入太大,且现有空间有限,则应考虑在低压母线上直接安装有源滤波器。

3.采用多相脉冲整流。

  在条件允许或是要求谐波在比较小的情况下,可采用多相整流的方法。12相脉冲整流的畸变大约为10%~15%,18相的为3%~8%,完全满足国际标准的要求。其缺点是需要专用变压器,不利于设备的改造,成本费用较高;

4.开发新型的变频器。

  现在许多厂家提出生产名为“绿色变频器”该变频器品质标准:输出和输入都为正弦波,输入功率因数可控,带任何负载都能使功率因数为1,可获工频上下任意可控的输出频率。变频器内置的交流电抗器能有效抑制谐波,同时可以保护整流桥不受电源电压瞬间尖波影响。

5.选用D-YN11接线组别的三相配电变压器。

  三相变压器中把高压侧绕组接成三角形,低压绕组为星型且中性点和“11”连接以保证相电动势接近于正弦形,从而避免了相电动势波形畸变的影响。此时,由地区低压电网供电的220V负荷,线路电流不会超过30A,可用220V单相供电,否则应以220/380V三相四线供电;目前我厂部分变压器(6000V/400V)变压器的接线方式为Y/Y0- 12方式,今后如果需要在这些变压器下大批量增加变频装置,则需要考虑更换变压器以减少谐波对6000V系统的影响。

减少或削弱变频器谐波的方法还有:

(1)当电机电缆长度大于50米或80米(非屏蔽)时,为了防止电机启动时地瞬时过电压,在变频器与电动机之间安装交流电抗器;

(2)当设备附近环境有电磁干扰时,加装抗射频干扰滤波器

(3)使用具有隔离的变压器,可以将电源侧绝大部分的传导干扰隔离在变压器之前;

(4)合理布线,屏蔽辐射,在电动机与变频器之间的电缆应穿钢管敷设或用铠装电缆,并和其他弱电信号线分走不同的电缆沟敷设,降低线路干扰,变频器使用专用接地线;

(5)选用具有开关电源的仪表等低压电器;

(6)在使用单片机、PLC等为核心的控制系统中,在编制软件的时候适当增加对检测信号和输出控制部分的信号滤波,以增加系统自身的抗干扰能力。

目前,我厂投入使用的变频器共67台,其中绝大部分变频器在安装时没有考虑谐波对电网的影响,因而没有附带消谐装置,其普遍现象是电机发热量、低频运行抖动、噪声等较工频运行的电机大,且变频器运行时容易误动作等,追其根源均是因高次谐波扰动所致。笔者建议在下一轮技术改造中,应对以上类似设备所在线路补加电抗器,滤波器等消谐装置,这样才能在节能同时,真正达到设备安全平稳运行,确保装置平稳生产;此外,在今后采购变频器时应倾向于新型绿色变频器。

六. 结论

  变频调速的应用使交流传动上了一个新台阶,泵类设备在石化领域有着广阔的应用空间,但根据不同的生产需求通常采用调整阀、回流阀、截止阀等节流设备进行流量、压力、水位等信号的控制。这样,不仅造成大量的能源浪费,管路、阀门等密封性能的破坏;还加速了泵腔、阀体的磨损和汽蚀,严重时损坏设备、影响生产、危及产品质量。

  近年来,出于节能的迫切需要和对产品质量不断提高的要求,加之采用变频器易操作、免维护、控制精度高,并可以实现高功能化等特点;因而采用变频器驱动的方案开始逐步取代风门、挡板、阀门的控制方案。但事物都有正反两面性,变频器谐波干扰的严重性也给设备稳定可靠运行带来潜在威胁,如何才能最大限度的抑制变频器谐波产生仍是摆在现今电气技术工作者面前有待解决的最大课题。本文从谐波的概念入手,分析变频器谐波产生的原因及其危害,在此基础上提出了抑制谐波的常用方法,相信会取得较好的效果,满足生产要求。

  鉴于笔者水平及经验有限,错误和疏漏之处难以避免,切望专家批评指正

下载本文
显示全文
专题