数 学 试 卷
(完卷时间:120分钟 满分:150分)
一.选择题(每小题4分,满分40分;请在答题卡的相应位置填涂) 1.-2的相反数是( )
A .2
B .-2
C .
2
1 D .2
1-
2.地球距离月球表面约为383900千米,那么这个数据用科学记数法表示为( )
A .410839.3⨯
B .510839.3⨯
C .610839.3⨯
D .41039.38⨯ 3.如图,下列几何体中主视图、左视图、俯视图都相同的是( )
A .半圆
B .圆柱
C .球
D .六棱柱 4.如图,直线a ∥b ,直线c 与a 、b 均相交,如果︒=∠501,
那么∠2的度数是( )
A .︒50
B .︒100
C .︒130
D .︒150 5.下列计算正确的是( )
A .6
32a a a =⋅ B .b
a b a 2
2)(=
C .623)(ab ab =
D .4
26a a a =÷ 6.“a 是实数,0≥a ”这一事件是( )
A .必然事件
B .不确定事件
C .不可能事件
D .随机事件
7.一条排水管的截面如图所示,已知排水管的截面圆半径10=OB ,
截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( ) A .8 B .10 C .12 D .16 8.下列四边形中,对角线不可能...
相等的是( ) A .直角梯形 B .正方形 C .等腰梯形 D .长方形
1
2
a
b
c
(第4题)
(第7题)
9.如图,直线23
3+-
=x y 与x 轴、y 轴分别交于A 、B 两点,
把△AOB 绕点A 顺时针旋转︒60后得到△B O A ''的坐标是( )
A .(4,32)
B .(32,4)
C .(3,3)
D .(232+,32)
10.方程0132=-+x x 的根可看作是函数3+=x y 的图象与函数x
y 1=
的图象交点的横坐标,那么用此
方法可推断出方程013=--x x 的实数根0x 所在的范围是( )
A .010<<-x
B .100< 的一个根,则222n mn m +-的值为____________. 15.如图,︒=∠30AOB ,n 个半圆依次外切,它们的 圆心都在射线OA 上并与射线OB 相切,设半圆1C 、 半圆2C 、半圆3C ……、半圆n C 的半径分别是1r 、 2r 、3r ……、n r ,则 =2011 2012r r ____________. 三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再 用黑色签字笔描黑) 16.(每小题7分,共14分) (1)计算:10 )2 1()14.3(8211---++- (2)先化简,再求值:)2()1(2 -++x x x ,其中2= x 。 123 (第15题) 17.(每小题7分,共14分) (1)如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F ,证明: △ABE ≌△FCE (2)如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角 α为︒45,看这栋高楼底部的俯角β为︒60,热气球与高楼的水 平距离m AD 80=,这栋高楼有多高(732.13≈,结果保留 小数点后一位)? 18.(满分12分)某市教育局为了了解初一学生第一学期参加社会实践活动的天数,随机抽查本市部分初 一学生第一学期参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图) 请你根据图中提供的信息,回答下列问题: (1)=a __________%,并写出该扇形所对圆心角的度数为___________;补全条形图; (2)在这次抽样调查中,众数和中位数分别是多少? (3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人? 19.(满分11分)如图,在△ABC 中,AC AB =,以AC 为直径的半圆O 分别交AB 、BC 于点D 、E (1)求证:点E 是BC 的中点 (2)若︒=∠80COD ,求∠BED 的度数。 B C D F E 天和7天以上 5 A O C B D E (第17(1)题) (第17(2)题) (第19题) 20.(满分12分)某文化用品商店计划同时购进一批A 、B 两种型号的计算器,若购进A 型计算器10只和B 型计算器8只,共需要资金880元;若购进A 型计算器2只和B 型计算器5只,共需要资金380只。 (1)求A 、B 两种型号的计算器每只进价各是多少元? (2)该经销商计划购进这两种型号的计算器共50只,而可用于购买这两种型号的计算器的资金不超过2520 元,根据市场行情,销售一只A 型计算器可获利10元,销售一只B 型计算器可获利15元,该经销商 希望销售完这两种型号的计算器,所获利润不少于620元,则该经销商有哪几种进货方案? 21.(满分13分)如图,在△ABC 中,10==AC AB cm ,16=BC cm ,4=DE cm ,动线段DE (端点 D 从点B 开始)沿BC 边以1cm /s 的速度向点C 运动,当端点 E 到达C 时运动停止,过点E 作E F ∥AC 交AB 于点F (当点E 与点C 重合时,EF 与CA 重合),连接DF ,设运动的时间为t 秒(0≥t ) (1)直接写出用含t 的代数式表示线段BE 、EF 的长; (2)在这个动动过程中,△DEF 能否为等腰三角形? 若能,请求出t 的值;若不能,请说明理由; (3)设M 、N 分别是DF 、EF 的中点,求整个运动过程中, MN 所扫过的面积。 22.(满分14分)如图,已知抛物线c bx x y ++=2 3 4经过A (3,0)、B (0,4) (1)求此抛物线的解析式; (2)若抛物线与x 轴的另一个交点为C ,求点C 关于直线AB 的对称点C '的坐标; (3)若点C 是第二象限内一点,以点D 为圆心的圆分别与x 轴、y 轴、直线AB 相切于点E 、F 、H ,问 在抛物线的对称轴上是否存在一点P ,使得PA PH -的值最大?若存在,求出该最大值;若不存在,请说明理由。 C (第21题) (第22(2)题) (第22(3)题) 2012年福州市初中毕业班质量检查 数学试卷参及评分标准 一、选择题 1.A 2.B 3.C 4.C 5.D 6.A 7.D 8.A 9.B 10.C 二、填空题: 11.(3)(3)x x +- 12.8 13.29 14.1 15.3 三、解答题: 16.(1)解:1 11( 3.14)2-⎛⎫ -+ -- ⎪⎝⎭ =1112 2 +⨯- ················································································· 4分 ······································································································· 7分 (2)解:()()2 12x x x ++- =22212x x x x +++- ·················································································· 4分 =221x +, ···································································································· 5分 当x = =2 21⨯+=5. ························································ 7分 17.(1)证明:∵AB 与CD 是平行四边形ABCD 的对边, ∴AB ∥CD , ······················································································· 2分 ∴∠F =∠FAB . ···················································································· 4分 ∵E 是BC 的中点, ∴BE=CE ,····························································· 5分 又∵ ∠AEB =∠FEC , ······································································· 6分 ∴ △ABE ≌△FCE . ··········································································· 7分 (2)解:如图,a = 45°,β= 60°, AD =80. 在Rt △ADB 中, ∵tan BD AD α= , ∴tan 80tan 45=80BD AD α==⨯︒ . ··········· 2分 在Rt △ADC 中, ∵tan C D AD β= , ∴tan 80tan 60C D AD β==⨯︒ ······· 5分 ∴80218.6BC BD CD =+=+≈. 答:这栋楼高约为218.6m . ·················· 7分 18.(1)a = 25 %, 90º . ·········································································· 2分 补全条形图. ···································································································· 4分 (2)众数是5,中位数是5. ········································································· 8分 (3)该市初一学生第一学期社会实践活动时间不少于5天的人数约是: 20000(30%25%20%)15000 ⨯++=(人). ···············································12分 19.(1)证法一:连接AE, ·································· 1分 ∵AC 为⊙O 的直径, ∴∠AEC =90º,即AE ⊥BC. ···························· 4分 ∵AB =AC, ∴BE =CE ,即点E 为BC 的中点.················ 6分 证法二:连接OE , ···································· 1分 ∵OE =OC, ∴∠C =∠OEC. ∵AB =AC, ∴∠C =∠B, ∴∠B =∠OEC, ∴OE ∥AB. ················································ 4分 ∴ 1EC OC BE AO ==, ∴EC =BE ,即点E 为BC 的中点. ················· 6分 ⑵∵∠COD =80º, ∴∠DAC =40º . ·········································· 8分 ∵∠DAC +∠DEC =180º,∠BED +∠DEC =180º, ∴∠BED =∠DAC =40º. ··························· 11分 20.解:(1)设A 型计算器进价是x 元,B 型计算器进价是y 元,························· 1分 得 108 880 25380. x y x y +=⎧⎨ +=⎩ ··············································································· 3分 解得40,60. x y =⎧⎨ =⎩ ····················································································· 5分 答:每只A 型计算器进价是40元,每只B 型计算器进价是60元. ················ 6分 (2)设购进A 型计算器为z 只,则购进B 型计算器为(50-z )只,得 4060(50)2520, 1015(50)620.z z z z +-≤⎧⎨ +-≥⎩ ····································································· 9分 解得24≤z ≤26, 因为z 是正整数,所以z =24,25,26. ···················································· 11分 答:该经销商有3种进货方案:①进24只A 型计算器,26只B 型计算器;②进25只A 型计算器,25只B 型计算器;③进26只A 型计算器,24只B 型计算器. ······························12分 21.解:(1)()4cm BE t =+, ·············································································· 1分 ()54cm 8 EF t = +. · ············································································· 4分 (2)分三种情况讨论: ①当D F E F =时, 有, E D F D E F B ∠=∠=∠ ∴点B 与点D 重合, ∴0.t = ····································· 5分 ②当D E EF =时, ∴()5448 t = +, 解得:12.5t = ···························· 7分 ③当DE DF =时, 有,D FE D EF B C ∠=∠=∠=∠ ∴△DEF ∽△ABC. ∴ DE EF AB BC = , 即 () 5 448 10 16 t +=, 解得:15625 t = . ························ 9分 综上所述,当=0t 、125 或 15625 秒时,△D EF 为等腰三角形. (3)设P 是AC 的中点,连接BP , ∵EF ∥,A C ∴△FBE ∽△ABC . ∴ ,EF BE AC BC = ∴ .EN BE C P BC = 又,B E N C ∠=∠ ∴△N BE ∽△,P B C ∴.N BE PBC ∠=∠····························································································10分 ∴点N 沿直线BP 运动,MN 也随之平移. 如图,设MN 从ST 位置运动到PQ 位置,则四边形PQST 是平行四边形. ········· 11分 ∵M 、N 分别是D F 、EF 的中点,∴M N ∥DE ,且ST =MN =1 2.2DE = 分别过点T 、P 作TK ⊥BC ,垂足为K ,PL ⊥BC ,垂足为L ,延长ST 交PL 于点R ,则四边形TKLR 是矩形, 当t =0时,EF =5 8 (0+4)=5 ,2 TK = 12 EF ·1sin 2 DEF ∠= ·52 ·33;5 4 = 当t =12时,EF =AC =10,PL =12 AC ·1sin 2 C =·10·3 3.5 = ∴PR=PL-RL=PL-TK=3-39.44= ∴PQ ST S ST = ·PR=2×99.4 2= ∴整个运动过程中,MN 所扫过的面积为 92 cm 2 . ···············································13分 解得:16,34,b c ⎧ =- ⎪⎨ ⎪=⎩ 22.解:(1)由题意得: 4, 4930,3c b c =⎧⎪⎨⨯++=⎪⎩ ………1分 ………2分 ∴抛物线解析式为2 41 33 y x x = -+. ···························································· 3分 (2)令0y =,得 2 410.3 3 x x - += 解得: 11x =,2x =3. ∴C 点坐标为(1,0). ······································· 4分 作CQ ⊥AB ,垂足为Q ,延长CQ ,使CQ='C Q ,则点'C 就是点C 关于直线AB 的对称点. 由△ABC 的面积得: 112 2 C Q AB C A O B ⋅= ⋅, ∵5,AB ==CA =2, ∴CQ = 85 ,'C C = 165 . ··············································································· 6分 作'C T ⊥x 轴,垂足为T ,则△'C TC ∽△BOA. ∴ ''C T CC CT OA AB OB == ∴'C T = 4825 ,C T = 25 ∴O T =1+25=25 ∴'C 点的坐标为(25 ,4825 ) ······························· 8分 (3)设⊙D 的半径为r ,∴AE =r +3,BF =4-r ,HB =BF =4-r . ∵AB =5,且AE =AH, ∴r +3=5+4-r , ∴r =3. ·······································10分 HB =4-3=1. 作HN ⊥y 轴,垂足为N , 则 H N H B O A AB =, BN HB OB AB = , ∴HN =35 ,BN =45 , ∴H 点坐标为(35 - , 245 ).···············12分 根据抛物线的对称性,得PA =PC, ∵PH PA PH PC HC -=-≤, ∴当H 、C 、P 三点共线时,PH PC -最大. ∵HC , ∴PH PA -.