视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2013年福州市初三质检数学试卷及答案
2025-09-24 18:42:37 责编:小OO
文档
2013年福州市初中毕业班质检数学模拟试卷及参

数 学 试 卷

(完卷时间:120分钟 满分:150分)

一.选择题(每小题4分,满分40分;请在答题卡的相应位置填涂) 1.-2的相反数是( )

A .2

B .-2

C .

2

1 D .2

1-

2.地球距离月球表面约为383900千米,那么这个数据用科学记数法表示为( )

A .410839.3⨯

B .510839.3⨯

C .610839.3⨯

D .41039.38⨯ 3.如图,下列几何体中主视图、左视图、俯视图都相同的是( )

A .半圆

B .圆柱

C .球

D .六棱柱 4.如图,直线a ∥b ,直线c 与a 、b 均相交,如果︒=∠501,

那么∠2的度数是( )

A .︒50

B .︒100

C .︒130

D .︒150 5.下列计算正确的是( )

A .6

32a a a =⋅ B .b

a b a 2

2)(=

C .623)(ab ab =

D .4

26a a a =÷ 6.“a 是实数,0≥a ”这一事件是( )

A .必然事件

B .不确定事件

C .不可能事件

D .随机事件

7.一条排水管的截面如图所示,已知排水管的截面圆半径10=OB ,

截面圆圆心O 到水面的距离OC 是6,则水面宽AB 是( ) A .8 B .10 C .12 D .16 8.下列四边形中,对角线不可能...

相等的是( ) A .直角梯形 B .正方形 C .等腰梯形 D .长方形

1

2

a

b

c

(第4题)

(第7题)

9.如图,直线23

3+-

=x y 与x 轴、y 轴分别交于A 、B 两点,

把△AOB 绕点A 顺时针旋转︒60后得到△B O A ''的坐标是( )

A .(4,32)

B .(32,4)

C .(3,3)

D .(232+,32)

10.方程0132=-+x x 的根可看作是函数3+=x y 的图象与函数x

y 1=

的图象交点的横坐标,那么用此

方法可推断出方程013=--x x 的实数根0x 所在的范围是( )

A .010<<-x

B .100<C .210<D .320<13.从分别标有1到9序号的9张卡片中任意抽取一张,抽到序号是4的倍数的概率是____________. 14.已知1-=x 是一元二次方程02=++n mx x

的一个根,则222n mn m +-的值为____________. 15.如图,︒=∠30AOB ,n 个半圆依次外切,它们的

圆心都在射线OA 上并与射线OB 相切,设半圆1C 、 半圆2C 、半圆3C ……、半圆n C 的半径分别是1r 、 2r 、3r ……、n r ,则

=2011

2012r r ____________.

三、解答题(满分90分;请将正确答案及解答过程填在答题卡相应位置,作图或添辅助线用铅笔画完,再

用黑色签字笔描黑) 16.(每小题7分,共14分) (1)计算:10

)2

1()14.3(8211---++-

(2)先化简,再求值:)2()1(2

-++x x x ,其中2=

x 。

123

(第15题)

17.(每小题7分,共14分)

(1)如图,在平行四边形ABCD 中,E 为BC 中点,AE 的延长线与DC 的延长线相交于点F ,证明:

△ABE ≌△FCE

(2)如图,热气球的探测器显示,从热气球看一栋高楼顶部的仰角

α为︒45,看这栋高楼底部的俯角β为︒60,热气球与高楼的水

平距离m AD 80=,这栋高楼有多高(732.13≈,结果保留 小数点后一位)?

18.(满分12分)某市教育局为了了解初一学生第一学期参加社会实践活动的天数,随机抽查本市部分初

一学生第一学期参加社会实践活动的天数,并用得到的数据绘制了下面两幅不完整的统计图(如图)

请你根据图中提供的信息,回答下列问题:

(1)=a __________%,并写出该扇形所对圆心角的度数为___________;补全条形图;

(2)在这次抽样调查中,众数和中位数分别是多少?

(3)如果该市共有初一学生20000人,请你估计“活动时间不少于5天”的大约有多少人?

19.(满分11分)如图,在△ABC 中,AC AB =,以AC 为直径的半圆O 分别交AB 、BC 于点D 、E (1)求证:点E 是BC 的中点

(2)若︒=∠80COD ,求∠BED 的度数。

B

C

D

F

E 天和7天以上

5

A

O

C

B

D E

(第17(1)题)

(第17(2)题)

(第19题)

20.(满分12分)某文化用品商店计划同时购进一批A 、B 两种型号的计算器,若购进A 型计算器10只和B 型计算器8只,共需要资金880元;若购进A 型计算器2只和B 型计算器5只,共需要资金380只。 (1)求A 、B 两种型号的计算器每只进价各是多少元? (2)该经销商计划购进这两种型号的计算器共50只,而可用于购买这两种型号的计算器的资金不超过2520

元,根据市场行情,销售一只A 型计算器可获利10元,销售一只B 型计算器可获利15元,该经销商

希望销售完这两种型号的计算器,所获利润不少于620元,则该经销商有哪几种进货方案?

21.(满分13分)如图,在△ABC 中,10==AC AB cm ,16=BC cm ,4=DE cm ,动线段DE (端点

D 从点B 开始)沿BC 边以1cm /s 的速度向点C 运动,当端点

E 到达C 时运动停止,过点E 作E

F ∥AC 交AB 于点F (当点E 与点C 重合时,EF 与CA 重合),连接DF ,设运动的时间为t 秒(0≥t ) (1)直接写出用含t 的代数式表示线段BE 、EF 的长; (2)在这个动动过程中,△DEF 能否为等腰三角形?

若能,请求出t 的值;若不能,请说明理由; (3)设M 、N 分别是DF 、EF 的中点,求整个运动过程中,

MN 所扫过的面积。

22.(满分14分)如图,已知抛物线c bx x y ++=2

3

4经过A (3,0)、B (0,4)

(1)求此抛物线的解析式;

(2)若抛物线与x 轴的另一个交点为C ,求点C 关于直线AB 的对称点C '的坐标;

(3)若点C 是第二象限内一点,以点D 为圆心的圆分别与x 轴、y 轴、直线AB 相切于点E 、F 、H ,问

在抛物线的对称轴上是否存在一点P ,使得PA PH -的值最大?若存在,求出该最大值;若不存在,请说明理由。

C

(第21题)

(第22(2)题) (第22(3)题)

2012年福州市初中毕业班质量检查 数学试卷参及评分标准

一、选择题

1.A 2.B 3.C 4.C 5.D 6.A 7.D 8.A 9.B 10.C 二、填空题:

11.(3)(3)x x +- 12.8 13.29

14.1 15.3

三、解答题:

16.(1)解:1

11( 3.14)2-⎛⎫

-+

-- ⎪⎝⎭

=1112

2

+⨯- ················································································· 4分

······································································································· 7分

(2)解:()()2

12x x x ++-

=22212x x x x +++- ·················································································· 4分

=221x +, ···································································································· 5分

当x =

=2

21⨯+=5. ························································ 7分

17.(1)证明:∵AB 与CD 是平行四边形ABCD 的对边,

∴AB ∥CD , ······················································································· 2分

∴∠F =∠FAB . ···················································································· 4分 ∵E 是BC 的中点, ∴BE=CE ,····························································· 5分 又∵ ∠AEB =∠FEC , ······································································· 6分

∴ △ABE ≌△FCE . ··········································································· 7分

(2)解:如图,a = 45°,β= 60°, AD =80.

在Rt △ADB 中, ∵tan BD AD

α=

∴tan 80tan 45=80BD AD α==⨯︒ . ··········· 2分 在Rt △ADC 中, ∵tan C D AD

β=

,

∴tan 80tan 60C D AD β==⨯︒ ······· 5分

∴80218.6BC BD CD =+=+≈.

答:这栋楼高约为218.6m . ·················· 7分 18.(1)a = 25 %, 90º . ·········································································· 2分 补全条形图. ···································································································· 4分

(2)众数是5,中位数是5. ········································································· 8分

(3)该市初一学生第一学期社会实践活动时间不少于5天的人数约是:

20000(30%25%20%)15000

⨯++=(人). ···············································12分

19.(1)证法一:连接AE, ·································· 1分

∵AC 为⊙O 的直径,

∴∠AEC =90º,即AE ⊥BC. ···························· 4分 ∵AB =AC,

∴BE =CE ,即点E 为BC 的中点.················ 6分 证法二:连接OE , ···································· 1分 ∵OE =OC, ∴∠C =∠OEC. ∵AB =AC, ∴∠C =∠B, ∴∠B =∠OEC,

∴OE ∥AB. ················································ 4分 ∴

1EC OC BE

AO

==,

∴EC =BE ,即点E 为BC 的中点. ················· 6分 ⑵∵∠COD =80º, ∴∠DAC =40º . ·········································· 8分 ∵∠DAC +∠DEC =180º,∠BED +∠DEC =180º,

∴∠BED =∠DAC =40º. ··························· 11分

20.解:(1)设A 型计算器进价是x 元,B 型计算器进价是y 元,························· 1分

得 108

880

25380.

x y x y +=⎧⎨

+=⎩ ··············································································· 3分

解得40,60.

x y =⎧⎨

=⎩ ····················································································· 5分

答:每只A 型计算器进价是40元,每只B 型计算器进价是60元. ················ 6分

(2)设购进A 型计算器为z 只,则购进B 型计算器为(50-z )只,得

4060(50)2520,

1015(50)620.z z z z +-≤⎧⎨

+-≥⎩

····································································· 9分 解得24≤z ≤26,

因为z 是正整数,所以z =24,25,26. ···················································· 11分

答:该经销商有3种进货方案:①进24只A 型计算器,26只B 型计算器;②进25只A 型计算器,25只B 型计算器;③进26只A 型计算器,24只B 型计算器. ······························12分 21.解:(1)()4cm BE t =+, ·············································································· 1分

()54cm 8

EF t =

+. ·

············································································· 4分 (2)分三种情况讨论:

①当D F E F =时,

有,

E D F

D E F B ∠=∠=∠

∴点B 与点D 重合,

∴0.t = ····································· 5分 ②当D E EF =时, ∴()5448

t =

+,

解得:12.5t =

···························· 7分

③当DE DF =时,

有,D FE D EF B C ∠=∠=∠=∠ ∴△DEF ∽△ABC.

DE EF AB

BC

=

, 即

()

5

448

10

16

t +=,

解得:15625

t =

. ························ 9分

综上所述,当=0t 、125

15625

秒时,△D EF 为等腰三角形.

(3)设P 是AC 的中点,连接BP , ∵EF ∥,A C ∴△FBE ∽△ABC . ∴

,EF BE AC

BC

=

.EN BE C P

BC

=

又,B E N C ∠=∠ ∴△N BE ∽△,P B C

∴.N BE PBC ∠=∠····························································································10分

∴点N 沿直线BP 运动,MN 也随之平移.

如图,设MN 从ST 位置运动到PQ 位置,则四边形PQST 是平行四边形. ········· 11分 ∵M 、N 分别是D F 、EF 的中点,∴M N ∥DE ,且ST =MN =1

2.2DE =

分别过点T 、P 作TK ⊥BC ,垂足为K ,PL ⊥BC ,垂足为L ,延长ST 交PL 于点R ,则四边形TKLR 是矩形,

当t =0时,EF =5

8

(0+4)=5

,2

TK =

12

EF ·1sin 2

DEF ∠=

·52

·33;5

4

=

当t =12时,EF =AC =10,PL =12

AC ·1sin 2

C =·10·3

3.5

=

∴PR=PL-RL=PL-TK=3-39.44=

∴PQ ST S ST = ·PR=2×99.4

2=

∴整个运动过程中,MN 所扫过的面积为

92

cm 2

. ···············································13分

解得:16,34,b c ⎧

=-

⎪⎨

⎪=⎩

22.解:(1)由题意得:

4,

4930,3c b c =⎧⎪⎨⨯++=⎪⎩

………1分 ………2分

∴抛物线解析式为2

41

33

y x x =

-+. ···························································· 3分

(2)令0y =,得

2

410.3

3

x x -

+=

解得:

11x =,2x =3.

∴C 点坐标为(1,0). ······································· 4分 作CQ ⊥AB ,垂足为Q ,延长CQ ,使CQ='C Q ,则点'C

就是点C 关于直线AB 的对称点. 由△ABC 的面积得:

112

2

C Q AB C A O B

⋅=

⋅,

∵5,AB ==CA =2, ∴CQ =

85

,'C C =

165

. ··············································································· 6分

作'C T ⊥x 轴,垂足为T ,则△'C TC ∽△BOA. ∴

''C T CC CT OA

AB OB == ∴'C T =

4825

,C T =

25

∴O T =1+25=25

∴'C 点的坐标为(25

,4825

) ······························· 8分

(3)设⊙D 的半径为r ,∴AE =r +3,BF =4-r ,HB =BF =4-r .

∵AB =5,且AE =AH, ∴r +3=5+4-r , ∴r =3. ·······································10分

HB =4-3=1.

作HN ⊥y 轴,垂足为N , 则

H N H B O A

AB

=,

BN HB OB AB

=

,

∴HN =35

,BN =45

, ∴H 点坐标为(35

-

245

).···············12分

根据抛物线的对称性,得PA =PC, ∵PH PA PH PC HC -=-≤,

∴当H 、C 、P 三点共线时,PH PC -最大.

∵HC ,

∴PH PA -.

下载本文

显示全文
专题