视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
1MW光伏并网技术方案设计(新)
2025-09-25 03:11:10 责编:小OO
文档
1MWp光伏并网发电系统

技 术 方 案

大盛微电科技股份有限公司

2017.7

一、总体设计方案

针对1MWp的太阳能光伏并网发电系统项目,我公司建议采用华为组串式逆变器,分块发电、集中并网方案,将系统分成20个50KW的并网发电单元,每个50KW的并网发电单元都接入0.4KV低压配电柜,然后通过中压变压器升压至10KV并网。

系统的电池组件选用265Wp多晶硅太阳能电池组件,其工作电压为30.5V,开路电压约为37.8V。经过计算,每个光伏阵列按照24块电池组件串联进行设计,50KW的并网单元需配置8个光伏阵列,192块电池组件,其功率为50.88KWp。则整个1MWp并网发电系统需配置3840块265Wp电池组件,实际功率约为1.017MWp。

将每个50KW逆变器,共20台接入并网装置。

整个并网发电系统按照20个50KW的并网发电单元进行设计,每个发电单元配置1台SUN2000-50KTL逆变器,整个1MWp系统需配置20台SUN2000-50KTL逆变器。每台逆变器的交流输出(3*277V/500V+PE)分别接入0.4KV三相交流低压配电柜

本系统需配置1套10KV升压站,包含10kV主变(0.4/10KV, 630KVA)、10kV 开关柜、0.4KV开关柜以及直流电源、二次控制柜等装置,柜与柜之间通过铜排或电缆连接。其中,0.4KV开关柜应配置10路三相交流低压输出接口(AC380/220V,50Hz),通过电缆分别接至20台SUN2000-50KTL逆变器的交流输出端,从而实现整个并网系统并入10KV中压交流电网。

综上所述,本系统主要由太阳能电池组件、光伏并网逆变器和10KV升压站、二次控制柜、交直流电缆等所组成。另外,系统应配置1套监控装置,用来监测系统的运行状态和工作参数。

二、系统组成

太阳能光伏并网发电系统主要组成如下:

(1)太阳能电池组件及其支架;

(2)光伏并网逆变器;

(3)交流配电柜(10kV主变(0.4/10KV, 1250KVA)、10kV 开关柜、0.4KV开关柜以及直流电源、二次控制柜等装置);

(4)系统的通讯监控装置;

(5)系统的防雷及接地装置; 

(6)土建、配电房等基础设施;

(7)系统的连接电缆及防护材料;

三、相关规范和标准

本并网逆变系统的制造、试验和验收可参考如下标准:

GB/T 191         包装储运图示标志

GB/T 19939-2005  光伏系统并网技术要求

GB/T 20046-2006  光伏(PV)系统电网接口特性(IEC 61727:2004,MOD)

GB/Z 199-2005  光伏发电站接入电力系统技术规定

GB/T 2423.1-2001 电工电子产品基本环境试验规程 试验A:低温试验方法

GB/T 2423.2-2001 电工电子产品基本环境试验规程 试验B:高温试验方法

GB/T 2423.9-2001 电工电子产品基本环境试验规程 试验Cb:设备用恒定湿热试验方法

GB 4208          外壳防护等级(IP代码)(equ IEC 60529:1998)

GB 3859.2-1993   半导体变流器 应用导则 

GB/T 14549-1993  电能质量 公用电网谐波

GB/T 15543-1995  电能质量 三相电压允许不平衡度

四、设计过程

4.1并网逆变器

此次光伏并网发电系统设计为20个50KW并网发电单元,每个50KW并网发电单元配置1台型号为SUN2000-50KTL逆变器,整个系统配置20台SUN2000-50KTL逆变器,组成1MWp并网发电系统。

4.1.1组串式逆变器性能特点简介

组串式逆变器是基于模块化概念基础上的,每个光伏组串通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。

许多大型光伏电厂使用组串逆变器,优点是不受组串见模块差异和遮影的影响,同时减少了光伏组件最佳工作点逆变器不匹配的情况,从而增加了发电量,技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性,同时,组串间引入“主-从”概念,使得系统在单串电能不能使整个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或机构工作,从而产出更多的电能。

最新的概念为几个逆变器相互组成一个“团队”来代替“主-从”概念,使得系统的可靠性又进了一步,目前无变压器式组串逆变器已占了主导地位。

该并网逆变器的主要性能特点如下:

1、智能

组串I-V曲线检测,智能识别落后组串;

8路高精度智能组串检测,减少故障定位时间80%;

华为专用无线通讯技术,无需专用通讯线缆。

2、高效

最高效率98.8%,中国效率98.4%;

500V交流输出电压,可减少30%交流线损;

无N线,可节省20%交流线损投资。

3、安全

安全的规避PID效应,主动防止触电并隔离;

无熔丝设计,避免直流侧故障引起的火灾隐患;

零点压穿越,满足电压接入要求。

4、可靠

自然散热,IP65防护等级;

业界最高防雷等级,内置交直流防雷模块。

4.1.2电路结构

SUN2000 通过 8 路 PV 组串输入接入逆变器,在逆变器内部组合为 4 路 MPPT 电路对组串进行最大功率点跟踪,再通过逆变电路实现直流电到三相交流电的转换,并且在直流、交流侧支持浪涌保护功能。

SUN2000-50KTL原理图

4.1.3技术指标

型   号

SUN2000-50KTL
效率
最大效率98.8%
中国效率98.4%
输入
最大可用直流功率53500W
最大输入电压1100V
每路MPPT最大输入电流

22A
每路MPPT最大短路电流

30A
最低工作电压/启动电压

200V/250V
太阳电池最大功率点跟踪(MPPT)范围

200Vdc~1000Vdc(满载MPPT电压范围625-850V)

额定输入电压720V
最大输入路数8
MPPT数量

4
输出
额定输出功率46000W
最大视在功率50500VA
最大有功功率 

50500W
额定输出电压3*277V/480V+PE
额定输出电流55.3A
最大输出电流60.8A
显示与通信
显示LED显示灯;蓝牙APP

RS485支持
USB支持
PLC支持
常规参数
尺寸(长*款*高)

930*550*260mm
重量55KG
工作温度-25℃-60℃

冷却方式自然对流
防护等级IP65
夜间自耗电<1W

4.2太阳能电池组件

目前在光伏并网系统中,普遍选用具有较大功率的太阳能电池组件,本系统可选用单块265W多晶硅太阳能电池组件,工作电压为30.5V,开路电压约为37.8V。当然,也可选用其它类型的太阳能电池组件。

SUN2000-50KTL并网逆变器的直流工作电压范围为:200Vdc~1000Vdc,最佳直流电压工作点为:625-850Vdc。

经过计算:737.5V/30.5V=24.18,得出:每个光伏阵列可采用24块电池组件串联。

每个光伏阵列的峰值工作电压:732V,开路电压:907.2V,满足逆变器的工作电压范围。

对于每个50KW并网发电单元,需要配置192块265Wp电池组件,组成20个光伏阵列。整个1MWp并网系统需配置3840块265Wp电池组件。

YL265P-29b性能参数如下:

型   号

YL265P-29b
标准测试条件下的电性能参数
峰值功率265
组件效率16.3%
峰值功率电压30.5V
峰值功率电流8.7A
开路电压37.8V
短路电流9.18A
温度特性
标称工作温度46℃

峰值功率的温度系数-0.42
开路电压的温度系数-0.32
短路电流的温度系数0.05
运行条件
最大系统电压1000Vdc
最大保险丝额定值15A
最大反向电流15A
工作温度-40℃-85℃

正面最大静载荷5400Pa
背面最大静载荷2400Pa
冰雹测试(冰雹直径/撞击速度)

25mm/23m/s
结构材料
玻璃(材料/厚度)

低铁钢化玻璃/3.2mm

电池(数量/种类/尺寸)

60/多晶/156.75mm*156.75mm

铝边框(材料)阳极氧化铝
接线盒(防护等级)≥IP67

线缆(长度/导体横截面积)

1000mm/4mm²

防护等级IP68
接插件(型号)MC4
4.3系统接入电网设计

(1)系统概述

本系统采用的SUN2000-50KTL并网逆变器适合于直接并入三相低压交流电网(AC380V/50Hz),由于整个系统需要并入10KV的交流中压电网,所以本系统需配置1套10KV升压站,该升压站主要包含10KV主变(0.4/10KV,1250KW)、10KV 开关柜、0.4KV开关柜以及直流电源、二次控制柜等装置。

系统配置20台SUN2000-50KTL并网逆变器的交流输出直接接入变电站的0.4KV开关柜,经交流低压母线汇流后通过10KV主变(0.4/10KV, 1MWp)并入10KV中压交流电网,从而最终实现系统的并网发电功能。

本系统的10KV中压交流电网电气原理框图如下:

(2)重要单元的选择

①10/0.4KV配电变压器的保护

10/0.4KV配电变压器的保护配置采用负荷开关加高遮断容量后备式限流熔断器组合的保护配置,既可提供额定负荷电流,又可断开短路电流,并具备开合空载变压器的性能,能有效保护配电变压器。

系统中采用的负荷开关, 通常为具有接通、隔断和接地功能的三工位负荷开关。变压器馈线间隔还增加高遮断容量后备式限流熔断器来提供保护。这是一种简单、可靠而又经济的配电方式。

✧开合空载变压器的性能好。本系统中10KV接入配电的负荷为1MWp的10/0.4KV配电变压器,其空载电流一般为额定电流的2%左右。

✧有效保护配电变压器,特别是对于油浸变压器,采用负荷开关加高遮断容量后备式限流熔断器比采用断路器更为有效,有时后者甚至并不能起到有效的保护作用。有关资料表明,当油浸变压器发生短路故障时,电弧产生的压力升高和油气化形成的气泡会占据原属于油的空间,油会将压力传给变压器油箱体,随短路状态的继续,压力进一步上升,致使油箱体变形和开裂。为了不破坏油箱体,必须在20 ms内切除故障。如采用断路器,因有继电保护再加上自身动作时间和熄弧时间,其全开断时间一般不会少于60 ms,这就不能有效地保护变压器。而高遮断容量后备式限流熔断器具有速断功能,加上其具有限流作用,可在10 ms之内切除故障并短路电流,能够有效地保护变压器。因此,应采用高遮断容量后备式限流熔断器而尽量不用断路器来保护电器,即便负荷为干式变压器,因熔断器保护动作快,也比用断路器好。

✧从继电保护的配合来讲,在大多数情况下,没有必要在接入柜中采用断路器,这是因为10KV配电网络的首端断路器(即110 kV或220 kV变电站的10KV馈出线断路器)的保护设置一般为:速断保护的时间为0s,过流保护的时间为0.5s,零序保护的时间为0.5s。若环网柜中采用断路器,即使整定时间为0s动作,由于断路器固有动作时间分散,也很难保证环网柜中的断路器而不是上一级断路器首先动作。

✧高遮断容量后备式限流熔断器可对其后所接设备,如电流互感器、电缆等都可提供保护。高遮断容量后备式限流熔断器的保护范围可在最小熔化电流(通常为熔断器额定电流的2~3倍)到最大开断容量之间。限流熔断器的电流-时间特性,一般为陡峭的反时限曲线,短路发生后,可在很短的时间内熔断,切除故障。如果采用断路器作保护。必定使其它电器如电缆、电流互感器、变压器套管等元件的热稳定要求大幅度提高,加大了电器设备的造价,增大工程费用。

在这里,同时需要注意在采用负荷开关加高遮断容量后备式熔断器组合时,两者之间要很好地配合,当熔断器非三相熔断时,熔断器的撞针要使负荷开关立即联跳,防止缺相运行。

②高遮断容量后备式限流熔断器的选择

由于光伏并网发电系统的造价昂贵,在发生线路故障时,要求线路切断时间短,以保护设备。

熔断器的特性及使用作为线路保护的优缺点分析。 

选用性能优良的熔断器,如美国S & C公司的熔断器及熔丝,该类产品具有如下特性: 

✧具有精确的时间-电流特性(可提供精确的始熔曲线和熔断曲线);

✧有良好的抗老化能力;

✧达到熔断值时能够快速熔断;

✧要有良好的切断故障电流能力,可有效切断故障电流

根据以上特性,可以把该熔断器作为线路保护,和并网逆变器以及整个光伏并网系统的保护使用,并通过选择合适的熔丝曲线和配合,实现上级熔断器与下级熔断器及熔断器与变电站保护之间的配合。

线路安装熔断器保护后,为了实现熔断器保护与变电站内线路保护之间的配合,必须对站内线路保护的电流定值和时间做出调整,把线路电流速断保护动作时间延时0.1s,过电流时间取0.5s,保护定值做如下调整:

根据线路负荷情况选定熔丝大小,根据熔丝的熔断曲线,选择熔丝在0.5s以内熔断的电流值,作为线路的过电流保护定值,核对该定值能可靠躲过线路最大负荷并在最小运行方式下,线路末端两相短路时有足够的灵敏度(该灵敏系数≥1.5时,过流保护定值即为合格)。在满足以上条件的前提下适当提高线路过电流保护定值,以保证故障电流达到过电流定值时,熔丝熔断,而断路器不需要跳闸。

根据该熔丝熔断曲线,选择熔丝在0.1s以内熔断的电流值,作为线路的电流速断保护定值,核对该定值在最小运行方式下,10KV母线两相短路时的灵敏度(该灵敏系数≥2时,速断值即为合格)。在满足以上条件的前提下适当提高线路速断保护定值,以保证故障电流达到速断定值时,熔丝熔断,变电站断路器不跳闸。 

对于10KV线路保护,《3-110kV电网继电保护装置运行整定规程》要求:除极少数有稳定问题的线路外,线路保护动作时间以保护电力设备的安全和满足规程要求的选择性为主要依据,不必要求速动保护快速切除故障。

通过选用性能优良的熔断器,能够大大提高线路在故障时的反应速度,降低事故跳闸率,更好地保护整个光伏并网发电系统。

(3)中压防雷保护单元

该中压防雷保护单元选用复合式过电压保护器,可有效大气过电压及各种真空断路器引起的操作过电压,对相间和相对地的过电压均能起到可靠的作用。 

该复合式过电压保护器不但能保护截流过电压、多次重燃过电压及三相同时开断过电压,而且能保护雷电过电压。

过电压保护器采用硅橡胶复合外套整体模压一次成形,外形美观,引出线采用硅橡胶高压电缆,除四个线鼻子为裸导体外,其他部分被绝缘体封闭,故用户在安装时,无需考虑它的相间距离和对地距离。该产品可直接安装在高压开关柜的底盘或互感器室内。安装时,只需将标有接地符号单元的电缆接地外,其余分别接A、B、C三相即可。

设置自控接入装置对消除谐振过电压也具有一定作用。当谐振过电压幅值高至危害电气设备时,该防雷模块接入电网,电容器增大主回路电容,有利于破坏谐振条件,电阻阻尼震荡,有利于降低谐振过电压幅值。所以可以在高次谐波含量较高的电网中工作,适应的电网运行环境更广。

另外,该防雷单元可增设自动控制设备,如放电记录器,清晰掌控工作动作状况。可以配置自动脱离装置,当设备过压或处于故障时,脱离开电网,确保正常运行。

(4)中压电能计量表

中压电能计量表是真正反应整个光伏并网发电系统发电量的计量装置,其准确度和稳定性十分重要。采用性能优良的高精度电能计量表至关重要。

为保证发电数据的安全,建议在高压计量回路同时装一块机械式计量表,作为IC式电能表的备用或参考。

该电表不仅要有优越的测量技术,还要有非常高的抗干扰能力和可靠性。同时,该电表还可以提供灵活的功能:显示电表数据、显示费率、显示损耗(ZV)、状态信息、警报、参数等。 此外,显示的内容、功能和参数可通过光电通讯口用维护软件来修改。通过光电通讯口,还可以处理报警信号,读取电表数据和参数。

4.4系统监控装置

采用高性能工业控制PC机作为系统的监控主机,配置光伏并网系统多机版监控软件,采用RS485通讯方式,连续每天24小时不间断对所有并网逆变器的运行状态和数据进行监测。

(1)监控主机的照片和系统特点如下:

✧嵌入式低功耗Eden处理器;

✧带LCD/CRT VGA;

✧以太网口;

✧RS232/RS485通讯接口;

✧USB2.0;

✧256M 内存(可升级);

✧40G 笔记本硬盘(可升级);

✧工控机和所有光伏并网逆变器之间的通讯采用RS485总线通讯方式。

 (2)光伏并网系统的监测软件可连续记录运行数据和故障数据如下:

1实时显示电站的当前发电总功率、日总发电量、累计总发电量、累计CO2总减排量以及每天发电功率曲线图。

2可查看每台逆变器的运行参数,主要包括:

A、直流电压

B、直流电流

C、直流功率

D、交流电压

E、交流电流

F、逆变器机内温度

G、时钟

H、频率

J、当前发电功率

K、日发电量

L、累计发电量

M、累计CO2减排量

N、每天发电功率曲线图

3监控所有逆变器的运行状态,采用声光报警方式提示设备出现故障,可查看故障原因及故障时间,监控的故障信息至少包括以下内容:

A、电网电压过高;

B、电网电压过低;

C、电网频率过高;

D、电网频率过低;

E、直流电压过高;

F、逆变器过载;

G、逆变器过热;

H、逆变器短路;

I、散热器过热;

J、逆变器孤岛;

K、DSP故障;

L、通讯失败;

(3)监控软件具有集成环境监测功能,主要包括日照强度、风速、风向、室外和室内环境温度和电池板温度等参量。

(4)监控装置可每隔5分钟存储一次电站所有运行数据,可连续存储20年以上的电站所有的运行数据和所有的故障纪录。

(5)可提供中文和英文两种语言版本。

(6)可长期24小时不间断运行在中文WINDOWS 2000,XP 操作系统。

(7)监控主机同时提供对外的数据接口,即用户可以通过网络方式,异地实时查看整个电源系统的实时运行数据以及历史数据和故障数据。

(8)显示单元可采用大液晶电视,具有非常好的展示效果,下图是本公司的并网逆变器的监控界面:

 

 

 

4.5环境监测仪

本系统配置1套环境监测仪(如下图所示),用来监测现场的环境情况:

该装置由风速传感器、风向传感器、日照辐射表、测温探头、控制盒及支架组成,适用于气象、军事、船空、海港、环保、工业、农业、交通等部门测量水平风参量及太阳辐射能量的测量。可测量环境温度、风速、风向和辐射强度等参量,其RS485通讯接口可接入并网监控装置的监测系统,实时记录环境数据。

4.6系统防雷接地装置

为了保证本工程光伏并网发电系统安全可靠,防止因雷击、浪涌等外在因素导致系统器件的损坏等情况发生,系统的防雷接地装置必不可少。系统的防雷接地装置措施有多种方法,主要有以下几个方面供参考:

(1)地线是避雷、防雷的关键,在进行配电室基础建设和太阳电池方阵基础建设的同时,选择电厂附近土层较厚、潮湿的地点,挖1~2米深地线坑,采用40扁钢,添加降阻剂并引出地线,引出线采用10mm2铜芯电缆,接地电阻应小于4欧姆。

(2)在配电室附近建一避雷针,高15米,并单独做一地线,方法同上,配电室在地下室不需要避雷针。

(3)直流侧防雷措施:电池支架应保证良好的接地,太阳能电池阵列连接电缆接入光伏阵列防雷汇流箱,汇流箱内含高压防雷器保护装置,电池阵列汇流后再接入直流防雷配电柜,经过多级防雷装置可有效地避免雷击导致设备的损坏。

(3)交流侧防雷措施:每台逆变器的交流输出经0.4KV开关柜接入电网,10KV变电站应配置防雷装置,有效地避免雷击和电网浪涌导致设备的损坏,且所有的机柜要有良好的接地。

【注】:对于本系统的防雷及接地装置,应由专业设计人员进行设计。

五、系统主要设备配置清单

序号名称型号规格数量备注
1光伏基础1017.6KW业主提供
2光伏组件265Wp3840块

英利
3光伏支架1017.6KW浙江希玛仕
4光伏并网逆变器SUN2000-50KTL20台

华为
5监控

装置

多机版监控软件SPS-PVNET

1套

合肥阳光
6工控机EBOX746-EFL1台

合肥阳光
7液晶显示器三星19寸

1台

合肥阳光
8环境监测仪SSYW-011台

合肥阳光
910KV升压站

10/0.4KV(1MWp)1套

大盛微电
10系统的防雷和接地装置1套

大盛微电
11土建及配电等基础设施1套

大盛微电
12系统连接电缆线及防护材料1套

大盛微电
六、系统原理框图

七、案例下载本文

显示全文
专题