视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
高考数学基础训练题
2025-09-25 03:02:45 责编:小OO
文档
高考数学基础训练题(1)

1.设集合,,则集合{且}=         。

2.下列说法中:(1)若,则;(2)等比数列是递增数列的一个必要条件是公比大于1;

(3)的否定是;(4)若,则或。其中不正确的有               。

3.设集合,,且,则实数的取值范围是        。

4.已知二次函数满足,则=         。                          

5.计算:=                。

6.已知函数的值域是[-1,4 ],则的值是              。

7.若函数,的图象关于直线对称,则           。

8.函数的图象与的图象关于直线y=x对称,那么的单调减区

间是           。

9.函数的反函数的图象的对称中心是(-1,3),则实数a=        。

10.是R上的减函数,且的图象经过点A(0,1)和B(3,-1),则不等式

 的解集为             。

11.已知函数,若,则的取值范围是             .

12.已知函数如果则的取值范围是____。

13.关于的方程有负根,则a的取值范围是              。

14.已知函数满足:对任意实数,当时,有,且

写出满足上述条件的一个函数:              。

15.定义在区间内的函数满足,则=          。

16.已知函数,,则等于              。

17.对任意,函数的值恒大于零,那么的取值范围是    。

18.若函数,其中表示两者中的较小者,则 的解为                 。

19.已知函数f (x)=log2(x+1),若-120.若方程有解,则实数的取值范围是     .

21.等差数列前n项之和为,若,则的值为             。

22.已知数列中,,那么的值为         。

23.已知等差数列前n项的和,若则的值是                   。

24.已知一个等差数列前五项的和是120,后五项的和是180,又各项之和是360,则此数列共有             项。

25.设等比数列中,每项均是正数,且,则 

                      。

26.一个项数为偶数的等比数列,首项是1,且所有奇数项之和是85,所有偶数项之和是170,则此数列共有             项。

27.设,利用课本中推导等差数列前n项和的公式的方法,可求得:

的值为          

28.已知数列的通项,前n项和为,则=               。

29.数列前n项的和等于                 。

30.数列中,,则其通项公式为              。

高考数学基础训练题(2)

31.函数的图象按向量平移后,所得函数的解析式是,则=        

(只需写出满足条件的一个向量)

32.函数的图象相邻的两条对称轴间的距离是            。

33.函数的单调增区间是                     。

34.已知,则         。

35.=_______________。

36.函数的最大值是                 。

37.已知则                。

38.已知则__    __。

39.如果,那么函数的最小值是                。

40.函数的最大值为                。

41.已知,则=         。

42.若非零向量满足,则与所成角的大小为        。

43.与向量平行的单位向量是_____________。

44.在直角坐标平面上,向量,向量,两向量在直线上的正射影长度相等,则直线的斜率为                     

45.设平面向量=(-2,1),=(1,),若与的夹角为钝角,则的取值范围是        。

46.已知向量,则向量的夹角范围是

                    。

47.将函数的图象按向量 平移后得到的图象,给出以下四个命题:

①的坐标可以是;     ②的坐标可以是和;

 ③的坐标可以是;      ④的坐标可以有无数种情况。

上述说法正确的是               。

48.某人在静水中游泳的速度为4千米/时,水的流向是由西向东,水流速度为2千米/时,则此人必须朝与水流方向成__*___度角时,才能沿正北方向前进 。

49.在△ABC中,BC=1,∠B=,当△ABC的面积为时,           。

50.若△ABC三边长AB=5,BC=7,AC=8,则等于                 。

51.函数的图象的最低点的坐标是        。

52.已知正实数满足,则的最小值为_________________。

53.设实数满足, 则的取值范围为____________。

54.是函数恒为负值的___________条件。

55.不等式的解集是                     。

56. 若不等式的解集为,则=              

57.关于的不等式的解集为             。

58.若,,且,则实数的范围是               .

59.若不等式对于任意正整数恒成立,则实数的取值范围是       

60.实系数一元二次方程的两根分别在区间和上,则的取值范围是                  

高考数学基础训练题(3)

61.从1,3,5,7中任取2个数字,从0,2,4,6,8中任取2个数字,组成没有重复数字的四位数,其中能被5整除的四位数共有         个。(用数字作答)

62.某小组有4个男同学和3个女同学,从这小组中选取4人去完成三项不同的工作,其中女同

学至少二人,每项工作至少一人,则不同选派方法的种数为         。

63.现有8名青年,其中有5名青年能胜任英语翻译工作,4名青年能胜任电脑软件设计工作,(其中有一人两项工作都能胜任),现要从中选派5名青年承担一项任务,其中3人从事英语翻译工作,2人从事软件设计工作,则不同的选法种数为           。

.6人站成一排照相,其中甲,乙,丙三人要站在一起,并且乙,丙要站在甲的两边,则不同的排法种数共有             种。

65. 现有6个参加兴趣小组的名额,分给4个班级,每班至少一个,则不同的分配方案共有_____种。

66.把6本书平均分给甲、乙、丙3个人,每人2本,有       种分法,若平均分成3份,每份2本,有       种分法。

67.从集合中选3个不同的数,使这3个数成递增的等差数列,则这样的数列共有_______组。

68.从6双不同的手套中任取4只,其中恰有一双配对的取法有_______种。  

69.从6个正方形拼成的右图的12个顶点中任取3个顶点作为一组,

其中可以构成三角形的组数为           。

70、某幢楼从二楼到三楼的楼梯共10级,上楼可以一步上一级,也可以一步上两级,若规定从二楼到三楼用8步走完,则上楼梯的方法有             。

71.  展开式中,的系数是          。

72.设函数中的的系数是          

73.展开式中项的系数是          。

74.,则=         。

75.若,则=    。

76.坛中有红球6个,白球4个,今从中任取3个,至少取到一个白球的概率为______.

77.从1,2,…..,9这九个数中,随机取2个不同的数,则这两个数的和为偶数的概率是           。

78.制造一个零件,甲机床的废品率是0.04,乙机床的废品率是0.05,从它们制造的产品中各任取一件,其中恰有一件废品的概率是              。

79.有一数学问题,在半小时内,甲能解决它的概率为,乙能解决它的概率为,如果两人都试图地在半小时内解决它,则两人都未解决的概率是   ,问题得到解决的概率是  。

80.一台X型号自动机床在一小时内不需要工人照看的概率为0.8,有四台这中型号的自动机床各自工作,则在一小时内至多2台机床需要工人照看的概率是        。

81.设两个事件A和B都不发生的概率为 ,A发生B不发生的概率和B发生A不发生的概率相同,则事件A发生的概率为            。

82.已知一个样本方差为,则这个样本的容量是________,平均数是____________.

83.在一次歌手大奖赛上,七位评委为歌手打出的分数如下:9.4,8.4,9.4 ,9.9 ,9.6 ,9.4 ,

9.7,去掉一个最高分和一个最低分后,所剩数据的平均值和方差分别为      、       。

84.假设要考察某公司生产的500克袋装牛奶的质量是否达标,现从800袋牛奶中抽取60袋进行检验. 利用随机数表抽取样本时,先将800袋牛奶按000, 000,…, 799进行编号,如果从随机数表第8行第7列的数开始向右读,请你依次写出最先检测的5袋牛奶的编号           .

 (下面摘取了随机数表第7行至第9行)

84  42  17  53  31   57  24  55  06  88   77  04  74  47  67   21  76  33  50  25   83  92  12  06  76

63  01  63  78  59   16  95  55  67  19   98  10  50  71  75   12  86  73  58  07   44  39  52  38  79

33  21  12  34  29   78    56  07  82   52  42  07  44  38   15  51  00  13  42   99  66  02  79  54

85.函数的递增区间为________________

86.设点是曲线上的任意一点,点处切线倾斜角为,则角的取值范围

是    。

87.垂直于直线且与曲线相切的直线方程的一般式__________.

88.函数在点x=1处有极小值-1,则=      ,=      。

.已知函数 既有极大值又有极小值,则实数的取值范围是

                      。 

90.已知:都在曲线上,且过P2点的曲线的切线经过P1点,若

,则___________。

高考数学基础训练题(4)

91.已知直线,过点,并且它们的方向向量满足,那么 的方程是                 。

92.若平面上两点A(-4,1),B(3,-1),直线与线段AB恒有公共点,则k的取值范围是           。

93.已知△ABC的顶点A(1,4),若点B在y轴上,点C在直线y=x上,则△ABC的周长的最小值是          。

94.设过点的直线l的斜率为k,若圆上恰有三点到直线l的距离等于1,则k的值是               。

95.直线与是圆的两条切线,则该圆的面积是       

96.过定点(1,2)总可作两直线与圆相切,则k的取值范围是   。

97.椭圆上的一点P到它的右准线的距离是10,那么P到它的左焦点的距离是    

98.已知定点,F是椭圆的左焦点,点M在椭圆上,若使 最小,则点M的坐标为        。

99.若椭圆的左、右焦点分别为,抛物线的焦点为,若,则此椭圆的离心率为             

100.当m满足             时,曲线与曲线的焦距相等.

101.已知双曲线的右顶点为A,而B、C是双曲线右支上两点,若三角形ABC

    为等边三角形,则m的取值范围是             。

102.经过双曲线上任一点,作平行于实轴的直线,与渐近线交于 两点,则=           

103.一个动圆的圆心在抛物线上,且动圆恒与直线相切,则此动圆必经过点    。

104.过抛物线焦点F的直线与抛物线交于A、B两点,若A、B在抛物线准线上的射影分别为

     A1、B1,则∠A1FB1=              。

105.长度为的线段AB的两个端点A、B都在抛物线上滑动,则线段

     AB的中点M到y轴的最短距离为              。

106.在正四棱锥P—ABCD中,若侧面与底面所成二面角的大小为60°,则异面直线PA与BC所成角的大小等于            。(结果用反三角函数值表示)

107.点A、B到平面距离分别为12,20,若斜线AB与成的角,则AB的长等于_____。

108.已知PA、PB、PC是从P点出发的三条射线,每两条射线的夹角均为600,则直线PC与平

面PAB所成角的余弦值是          。

109.从空间一个点P引四条射线PA、PB、PC、PD,它们两两之间的夹角相等,则该角的余弦

值为               。

110.已知△ABC中,AB=9,AC=15,∠BAC=1200,这三角形所在平面α外的一点P与三个顶

点的距离都是14,那么P到平面α的距离是             。

111.在平面角为600的二面角内有一点P,P到α、β的距离分别为PC=2cm,

PD=3cm,则P到棱l的距离为____________。

112. 在平面α内有一个正△ABC,以BC边为轴把△ABC旋转θ角,θ∈(0,),得到△A'BC,当cosθ=

           时,△A'BC在平面α内的射影是直角三角形。

113.三棱柱的一个侧面面积为S,此侧面所对的棱与此面的距离为h,则此棱柱的体积为    。

114.已知空间三个平面两两垂直,直线与平面所成的角都是,则直线与平面所成角的是         .

115.在正三棱锥S—ABC中,侧棱SC⊥侧面SAB,侧棱SC=,则此正三棱锥的外接球的表面积为             。

116.给定一个正方体与三个球,其中一个球与该正方体的各面都相切,第二个球与正方体的各棱都相切,第三个球过正方体的各个顶点,则此三球的半径之比是           。

117.某地球仪上北纬,纬线的长度为,该地球仪的半径是____cm,表面积是    cm2。

118.在北纬450圈上有M、N两点,点M在东经200,N在西经700,若地球半径是R,则M、N两点的球面距离是             

119. 自半径为R的球面上一点P引球的两两垂直的弦PA、PB、PC,则=_____。

120.球面上有三个点A、B、C组成球的一个内接三角形,若AB=18,BC=24,AC=30,且球

心到△ABC所在平面的距离等于球半径的,那么这个球的表面积是         。

高考数学基础训练题参

基础训练题(1)

1、[1,3] ;2、(1)(2)(3);3、[0,1];4、-3;5、0;6、48;7、6;8、(0,1];9、2;10、(-1,2);

11、;12、;13、(-3,1);14、;15、;16、;

17、;18、;19、;20、;21、95;22、765;

23、;24、12;25、20; 26、8;27、;28、;29、; 

30、;

基础训练题(2)

31、;32、; 33、; 34、; 35、;36、7;37、;  

38、;39、;40、;41、;42、900;43、,; 44、;

45、;46、; 47、①②③④ ;48、135;49、;50、;

51、(0,2);52、9; 53、; 54、充分非必要;55、; 56、-4; 57、(0,1); 

58、;59、; 60、;

基础训练题(3)

61、300;62、792;63、42;、48;65、10;66、90,15;67、90;68、240;69、200;70、28;

71、;72、24000;73、-8;74、242;75、;76、;77、;78、0.086;

79、;80、0.9728;81、;82、10,4;83、;84、; 

85、;86、;87、;88、;、;90、;

基础训练题(4)

91、; 92、; 93、; 94、1或7;95、;96、;

97、12;98、;99、;100、m<9且m≠6且m≠5 ;101、;102、;103、;104、;105、;106、;107、16或;108、;109、;

110、7;111、;112、;113、;114、;115、;116、;117、;

118、;119、;120、1200π;下载本文

显示全文
专题