视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
物理必修二天体运动各类问题
2025-09-23 22:05:17 责编:小OO
文档
天体运动中的几个“另类”问题

  天体运动部分的绝大多数问题,解决的原理及方法比较单一,处理的基本思路是:将天体的运动近似看成匀速圆周运动,根据万有引力提供向心力列方程,向心加速度按涉及的运动学量选择相应的展开形式。

  如有必要,可结合黄金代换式简化运算过程。不过,还有几类问题仅依靠基本思路和方法,会让人感觉力不从心,甚至就算找出了结果但仍心存疑惑,不得要领。这就要求我们必须从根本上理解它们的本质,把握解决的关键,不仅要知其然,更要知其所以然。

  一、变轨问题

  例:某人造卫星因受高空稀薄空气的阻力作用,绕地球运转的轨道会慢慢改变。每次测量中卫星的运动可近似看作圆周运动,某次测量卫星的轨道半径为,后来变为,以、表示卫星在这两个轨道上的线速度大小,、表示卫星在这两个轨道上绕地球运动的周期,则( )

  A.,,

  B.,,

  C.,,

  D.,,

  分析:空气阻力作用下,卫星的运行速度首先减小,速度减小后的卫星不能继续沿原轨道运动,由于而要作近(向)心运动,直到向心力再次供需平衡,即,卫星又做稳定的圆周运动。

  如图,近(向)心运动过程中万有引力方向与卫星运动方向不垂直,会让卫星加速,速度增大(从能量角度看,万有引力对卫星做正功,卫星动能增加,速度增大),且增加的数值超过原先减少的数值。所以、,又由可知。

  解:应选C选项。

  说明:本题如果只注意到空气阻力使卫星速度减小的过程,很容易错选B选项,因此,分析问题一定要全面,切忌盲目下结论。

  卫星从椭圆轨道变到圆轨道或从圆轨道变到椭圆轨道是卫星技术的一个重要方面,卫星定轨和返回都要用到这个技术。

  以卫星从椭圆远点变到圆轨道为例加以分析:如图,在轨道远点,万有引力,要使卫星改做圆周运动,必须满足和, 而在远点明显成立,所以只需增大速度,让速度增大到成立即可,这个任务由卫星自带的推进器完成。“神舟”飞船就是通过这种技术变轨的,地球同步卫星也是通过这种技术定点于同步轨道上的。

  二、双星问题

  例:在天体运动中,将两颗彼此相距较近的行星称为双星。它们在相互的万有引力作用下间距保持不变,并沿半径不同的同心圆轨道做匀速圆周运动。如果双星间距为,质量分别为和,试计算:(1)双星的轨道半径;(2)双星的运行周期;(3)双星的线速度。

  分析:双星系统中,两颗星球绕同一点做匀速圆周运动,且两者始终与圆心共线,相同时间内转过相同的角度,即角速度相等,则周期也相等。但两者做匀速圆周运动的半径不相等。

  解:设行星转动的角速度为,周期为

  (1)如图,对星球,由向心力公式可得:

  同理对星球有:

  两式相除得:(即轨道半径与质量成反比)

  又因为

  所以,,

  (2)因为,所以

  (3)因为,所以

  说明:处理双星问题必须注意两点(1)两颗星球运行的角速度、周期相等;(2)轨道半径不等于引力距离(这一点务必理解)。弄清每个表达式中各字母的含义,在示意图中相应位置标出相关量,可以最大限度减少错误。

  三、追及问题

  例:两颗卫星在同一轨道平面内绕地球做匀速圆周运动,地球半径为,卫星离地面的高度等于,卫星离地面高度为,则:(1)、两卫星运行周期之比是多少(2)若某时刻两卫星正好同时通过地面同一点正上方,则至少经过多少个周期与相距最远

  分析:两卫星周期之比可按基本思路处理;要求与相距最远的最少时间,其实是一个追及和相遇问题,可借用直线运动部分追及和相遇问题的处理思想,只不过,关键一步应该变换成“利用角位移关系列方程”。

  解:(1)对做匀速圆周运动的卫星使用向心力公式

  可得:

  所以

  (2)由可知:,即转动得更快。

  设经过时间两卫星相距最远,则由图可得:

   (、2、3……)

  其中时对应的时间最短。

  而  Φ=ωt   ,

  所以,得

  说明:圆周运动中的追及和相遇问题也应“利用(角)位移关系列方程”。当然,如果能直接将角位移关系转化成转动圈数关系,运算过程更简洁,但不如利用角位移关系容易理解,而且可以和直线运动中同类问题的解法统一起来,记忆比较方便。常见情况下的角位移关系如下,请自行结合运动过程示意图理解。设,则:

  四、超失重问题

  例:某物体在地面上受到的重力为,将它放置在卫星中,在卫星以加速度随火箭加速上升的过程中,当物体与卫星中的支持物的相互压力为时,求此时卫星距地球表面有多远(地球半径,取)

  分析:物体具有竖直向上的加速度,处于超重状态,物体对支持物的压力大于自身实际重力;而由于高空重力加速度小于地面重力加速度,同一物体在高空的实际重力又小于在地面的实际重力。

  解:如图,设此时火箭离地球表面的高度为,火箭上物体对支持物的压力为,物体受到的重力为

  根据超、失重观点有

  可得

  而由可知:

  所以

  说明:航天器在发射过程中有一个向上加速运动阶段,在返回地球时有一个向下减速阶段,这两个过程中航天器及内部的物体都处于超重状态;航天器进入轨道作匀速圆周运动时,由于万有引力(重力)全部提供向心力,此时航天器及内部的所有物体都处于完全失重状态。

  既掌握基本问题的处理方法,又熟悉“另类”问题的分析要点,这样在面对天体运动问题时才能应付自如。

  五、变式练习

  1.开普勒三定律也适用于神舟七号飞船的变轨运动。飞船与火箭分离后进入预定轨道,飞船在近地点(可认为近地面)开动发动机加速,之后,飞船速度增大并转移到与地球表面相切的椭圆轨道,飞船在远地点再次点火加速,飞船沿半径为的圆轨道绕地运动。设地球半径为,地球表面的重力加速度为,若不计空气阻力,试求神舟七号从近地点到远地点的时间(变轨时间)。

  2.两个星球组成双星,它们在相互之间的万有引力作用下,绕连线上某点做周期相同的匀速圆周运动。现测得两星中心距离为R,其运动周期为T,求两星的总质量。

  3.如图所示,是地球的同步卫星。另一卫星的圆形轨道位于赤道平面内,离地面高度为,已知地球半径为,地球自转角速度为,地球表面的重力加速度为,为地球中心。(1)求卫星的运行周期;(2)若卫星绕行方向与地球自转方向相同,某时刻、两卫星相距最近(、、在同一直线上),则至少经过多长时间,他们再一次相距最近

  4.北京时间9月27日17时,航天员翟志刚在完成一系列空间科学实验,并按预定方案进行太空行走后,安全返回神舟七号轨道舱,这标志着我国航天员首次空间出舱活动取得成功。若这时神舟七号在离地面高为的轨道上做圆周运动,已知地球半径为,地球表面处的重力加速度为。航天员站在飞船时,求:(1)航天员对舱底的压力,简要说明理由。(2)航天员运动的加速度大小。

  5.为了迎接太空时代的到来,美国国会通过一项计划:在2050年前建造成太空升降机,就是把长绳的一端搁置在地球的卫星上,另一端系住长降机。放开绳,升降机能到达地球上;人坐在升降机里,在卫星上通过电动机把升降机拉到卫星上。已知地球表面的重力加速,地球半径为。求:

  (1)某人在地球表面用体重计称得重,站在升降机中,当升降机以加速度(为地球表面处的重力加速度)竖直上升时,在某处此人再一次用同一体重计称得视重为,忽略地球自转的影响,求升降机此时距地面的高度;

  (2)如果把绳的一端搁置在同步卫星上,地球自转的周期为,求绳的长度至少为多长。

  变式练习答案:

  1.

  2.

  3.(1)(2)

  4.(1)航天员对神舟七号的压力为零。因为地球对航天员的万有引力恰好提供了航天员随飞船绕地球做匀速圆周运动所需的向心力,航天员处于完全失重状态;(2)。

  5.(1);(2)。下载本文

显示全文
专题