视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
初中数学 数列的找规律
2025-09-23 22:29:12 责编:小OO
文档
初中数学  数列的找规律:

一、基本方法——看增幅

(一)如增幅相等(此实为等差数列):对每个数和它的前一个数进行比较,如增幅相等,则第n个数可以表示为:a+(n-1)b,其中a为数列的第一位数,b为增幅,(n-1)b为第一位数到第n位的总增幅.然后再简化代数式a+(n-1)b.

例:4、10、16、22、28……,求第n位数.

分析:第二位数起,每位数都比前一位数增加6,增幅相都是6,所以,第n位数是:4+(n-1)×6=6n-2

(二)如增幅不相等,但是,增幅以同等幅度增加(即增幅的增幅相等,也即增幅为等差数列).如增幅分别为3、5、7、9,说明增幅以同等幅度增加.此种数列第n位的数也有一种通用求法.

基本思路是:

1、求出数列的第n-1位到第n位的增幅;

2、求出第1位到第第n位的总增幅;

3、数列的第1位数加上总增幅即是第n位数.

举例说明:2、5、10、17……,求第n位数.

分析:数列的增幅分别为:3、5、7,增幅以同等幅度增加.那么,数列的第n-1位到第n位的增幅是:3+2×(n-2)=2n-1,总增幅为:

[3+(2n-1)]×(n-1)÷2=(n+1)×(n-1)=n2-1

所以,第n位数是:2+ n2-1= n2+1

此解法虽然较烦,但是此类题的通用解法,当然此题也可用其它技巧,或用分析观察凑的方法求出,方法就简单的多了.

(三)增幅不相等,但是,增幅同比增加,即增幅为等比数列,如:2、3、5、9,17增幅为1、2、4、8.

(四)增幅不相等,且增幅也不以同等幅度增加(即增幅的增幅也不相等).此类题大概没有通用解法,只用分析观察的方法,但是,此类题包括第二类的题,如用分析观察法,也有一些技巧.

二、基本技巧

(一)标出序列号:找规律的题目,通常按照一定的顺序给出一系列量,要求我们根据这些已知的量找出一般规律.找出的规律,通常包序列号.所以,把变量和序列号放在一起加以比较,就比较容易发现其中的奥秘.

例如,观察下列各式数:0,3,8,15,24,…….试按此规律写出的第100个数是 .

解答这一题,可以先找一般规律,然后使用这个规律,计算出第100个数.我们把有关的量放在一起加以比较:

给出的数:0,3,8,15,24,…….

序列号: 1,2,3, 4, 5,…….

容易发现,已知数的每一项,都等于它的序列号的平方减1.因此,第n项是n2-1,第100项是1002-1.

(二)公因式法:每位数分成最小公因式相乘,然后再找规律,看是不是与n2、n3,或2n、3n,或2n、3n有关.

例如:1,9,25,49,(),(),的第n为(2n-1)2 

(三)看例题:

A: 2、9、28、65.增幅是7、19、37.,增幅的增幅是12、18 答案与3有关且.即:n3+1

B:2、4、8、16.增幅是2、4、8.. .答案与2的乘方有关 即:2n

(四)有的可对每位数同时减去第一位数,成为第二位开始的新数列,然后用(一)、(二)、(三)技巧找出每位数与位置的关系.再在找出的规律上加上第一位数,恢复到原来.

例:2、5、10、17、26……,同时减去2后得到新数列:

0、3、8、15、24……,

序列号:1、2、3、4、5

分析观察可得,新数列的第n项为:n2-1,所以题中数列的第n项为:(n2-1)+2=n2+1

(五)有的可对每位数同时加上,或乘以,或除以第一位数,成为新数列,然后,在再找出规律,并恢复到原来.

例 : 4,16,36,,?,144,196,… ?(第一百个数)

同除以4后可得新数列:1、4、9、16…,很显然是位置数的平方.

(六)同技巧(四)、(五)一样,有的可对每位数同加、或减、或乘、或除同一数(一般为1、2、3).当然,同时加、或减的可能性大一些,同时乘、或除的不太常见.

(七)观察一下,能否把一个数列的奇数位置与偶数位置分开成为两个数列,再分别找规律.

三、基本步骤

1、 先看增幅是否相等,如相等,用基本方法(一)解题.

2、 如不相等,综合运用技巧(一)、(二)、(三)找规律

3、 如不行,就运用技巧(四)、(五)、(六),变换成新数列,然后运用技巧(一)、(二)、(三)找出新数列的规律

4、 最后,如增幅以同等幅度增加,则用用基本方法(二)解题

四、练习题

例1:一道初中数学找规律题

0,3,8,15,24,······

2,5,10,17,26,·····

0,6,16,30,48······

(1)第一组有什么规律?

(2)第二、三组分别跟第一组有什么关系?

(3)取每组的第7个数,求这三个数的和?

例2、观察下面两行数 2,4,8,16,32,,...(1)

5,7,11,19,35,67...(2)

根据你发现的规律,取每行第十个数,求得他们的和.(要求写出最后的计算结果和详细解题过程.)

例3、白黑白黑黑白黑黑黑白黑黑黑黑白黑黑黑黑黑 排列的珠子,前2002个中有几个是黑的?4、 3^2-1^2=8×1 5^2-3^2=8×2 7^2-5^2=8×3 ……用含有N的代数式表示规律 写出两个连续技术的平方差为888的等式

五、对于数表

1、先看行的规律,然后,以列为单位用数列找规律方法找规律

2、看看有没有一个数是上面两数或下面两数的和或差

下面是常用的一些求和公式:下载本文

显示全文
专题