视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
第一讲 一笔画问题
2025-09-23 22:21:52 责编:小OO
文档
小学奥数:

第一讲  一笔画问题

小朋友们,你们能把下面的图形一笔画出来吗?

如果用笔在纸上连续不断又不重复,一笔画成某种图形,这种图形就叫一笔画。那么是不是所有的图形都能一笔画成呢?这一讲我们就一起来学习一笔画的规律。

典型例题

例【1】  下面这些图形,哪个能一笔画?哪个不能一笔画?

(1)          (2)          (3)         (4)

分析  图(1)一笔画出,可以从图中任意一点开始画该图,画到同一点结束。

经过尝试后,可以发现图(2)不能一笔画出。

图(3)不是连通的,显然也不能一笔画出。图(4)也可以一笔画出,且从任何一点出发都可以。

通过观察,我们可以发现一个几何图形中和一点相连通的线的条数不同。由一点发出有偶数条线,那么这个点叫做偶点。相应的,由一点出发有奇数条数,则这个点叫做奇点。

再看图(1)、(4),其中每一点都是偶点,都可以一笔画,且可以从任意一点画起。而图(2)有4个奇点,2个偶点,不能一笔画成。

这样我们发现,一个图形能否一笔画和这个图形奇点,偶点的个数有某种联系,到底存在什么样的关系呢,我们再看一个例题。

例【2】  下面各图能否一笔画成?

(1)               (2)              (3)

分析  图(1)从任意一点出都可以一笔画成,因为它的每一个点都是与两条线相连的偶点。

关于图(2),经过反复试验,也可找到画法:由A   B    C    A

 D    C。图中B、D为偶点,A、C为奇点,即图中有两个奇点,两个偶点。要想一笔画,需从奇点出发,回到奇点。

经过尝试,图(3)无法一笔画成,而图中有4个奇点,5个偶点。

解  图(1)、(2)可以一笔画。

   这样我们可以发现能否一笔画和奇点、偶点的数目有着紧密的关系。

如果图形只有偶点,可以以任意一点为起点,一笔画出。如果只有两个奇点,也可以一笔画出,但必须从奇点出发,由另一点结束。 

如果图形的奇点个数超过两个,则图形不能一笔画出。

例【3】 下面的图形,哪些能一笔画出?哪些不能一笔画出?

分析  图(1)有两个奇点,两个偶点,可以一笔画,须由A开始或由B开始到B结束或到A结束。

图(2)有10个奇点,大于2,不能一笔画成。

图(3)有4个奇点,1个偶点,因此也不能一笔画成。

解  图(1)的画法见下图。

例【4】  下图中,图(1)至少要画几笔才能画成?

    分析  图(1)有4个奇点,所以不能一笔画出。如果把它分成几个部分,而每个部分是一笔画图形,则我们就可以用最少的几笔画出这个图形。按照这样的要求,每个部分最多含有两个奇点,可以采用再两个奇点之间增加一条或者去掉一条线的方法,该奇点就变成偶点。经观察,图(1)可以切分成图(A)、(B)两个图形。这两部分都可以一笔画出,所以图(1)至少用两笔画出。

解  将图(1)分成图(A)、(B),则图(A)可由A-B-O-D-A-C-D一笔画成,图(B)由B-C一笔画成,所以图(1)至少要两笔画完。

O

小结  能否一笔画成,关键在于判别奇点、偶点的个数。

一、只有偶点,可以一笔画,并且可以以任意一点作为起点。

二、只有两个奇点,可以一笔画,但必须以这两个奇点分别作为起点和终点。

三、奇点超过两个,则不能一笔画。对于一些比较复杂的路线问题,可以先转化为简单的几何图形,然后根据判定是否能一笔画的方法进行解答。下载本文

显示全文
专题