难点突破策略:
若物体是轻轻地放在了匀速运动的传送带上,那么物体一定要和传送带之间产生相对滑动,物体和传送带一定同时受到方向相反的滑动摩擦力。关于物体所受滑动摩擦力的方向判断有两种方法:一是根据滑动摩擦力一定要阻碍物体间的相对运动或相对运动趋势,先判断物体相对传送带的运动方向,可用假设法,若无摩擦,物体将停在原处,则显然物体相对传送带有向后运动的趋势,因此物体要受到沿传送带前进方向的摩擦力,由牛顿第三定律,传送带要受到向后的阻碍它运动的滑动摩擦力;二是根据摩擦力产生的作用效果来分析它的方向,物体只所以能由静止开始向前运动,则一定受到向前的动力作用,这个水平方向上的力只能由传送带提供,因此物体一定受沿传送带前进方向的摩擦力,传送带必须要由电动机带动才能持续而稳定地工作,电动机给传送带提供动力作用,那么物体给传送带的就是阻力作用,与传送带的运动方向相反。
(1)若物体是静置在传送带上,与传送带一起由静止开始加速,若物体与传送带之间的动摩擦因数较大,加速度相对较小,物体和传送带保持相对静止,它们之间存在着静摩擦力,物体的加速就是静摩擦力作用的结果,因此物体一定受沿传送带前进方向的摩擦力;若物体与传送带之间的动摩擦因数较小,加速度相对较大,物体和传送带不能保持相对静止,物体将跟不上传送带的运动,但它相对地面仍然是向前加速运动的,它们之间存在着滑动摩擦力,同样物体的加速就是该摩擦力的结果,因此物体一定受沿传送带(2)前进方向的摩擦力。
(3)若物体与传送带保持相对静止一起匀速运动,则它们之间无摩擦力,否则物体不可能匀速运动。
(4)若物体以大于传送带的速度沿传送带运动方向滑上传送带,则物体将受到传送带提供的使它减速的摩擦力作用,直到减速到和传送带有相同的速度、相对传送带静止为止。因此该摩擦力方向一定与物体运动方向相反。
(5)若物体与传送带保持相对静止一起匀速运动一段时间后,开始减速,因物体速度越来越小,故受到传送带提供的使它减速的摩擦力作用,方向与物体的运动方向相反,传送带则受到与传送带运动方向相同的摩擦力作用。
(6)若传送带是倾斜方向的,情况就更为复杂了,因为在运动方向上,物体要受重力沿斜面的下滑分力作用,该力和物体运动的初速度共同决定相对运动或相对运动趋势方向。
例1:如图2—1所示,传送带与地面成夹角θ=37°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A→B的长度L=16m,则物体从A到B需要的时间为多少?
【审题】传送带沿逆时针转动,与物体接触处的速度方向斜向下,物体初速度为零,所以物体相对传送带向上滑动(相对地面是斜向下运动的),因此受到沿斜面向下的滑动摩擦力作用,这样物体在沿斜面方向上所受的合力为重力的下滑分力和向下的滑动摩擦力,因此物体要做匀加速运动。当物体加速到与传送带有相同速度时,摩擦力情况要发生变化,同速的瞬间可以看成二者间相对静止,无滑动摩擦力,但物体此时还受到重力的下滑分力作用,因此相对于传送带有向下的运动趋势,若重力的下滑分力大于物体和传送带之间的最大静摩擦力,此时有μ<tanθ,则物体将向下加速,所受摩擦力为沿斜面向上的滑动摩擦力;若重力的下滑分力小于或等于物体和传送带之间的最大静摩擦力,此时有μ≥tanθ,则物体将和传送带相对静止一起向下匀速运动,所受静摩擦力沿斜面向上,大小等于重力的下滑分力。也可能出现的情况是传送带比较短,物体还没有加速到与传送带同速就已经滑到了底端,这样物体全过程都是受沿斜面向上的滑动摩擦力作用。
【解析】物体放上传送带以后,开始一段时间,其运动加速度。这样的加速度只能维持到物体的速度达到10m/s为止,其对应的时间和位移分别为:<16m,以后物体受到的摩擦力变为沿传送带向上,其加速度大小为(因为mgsinθ>μmgcosθ)。。设物体完成剩余的位移所用的时间为,则,11m=解得:所以:。
【总结】关键是要分析好各阶段物体所受摩擦力的大小和方向,若μ>0.75,第二阶段物体将和传送带相对静止一起向下匀速运动;若L<5m,物体将一直加速运动。因此,在解答此类题目的过程中,对这些可能出现两种结果的特殊过程都要进行判断。
例2:如图2—2所示,传送带与地面成夹角θ=30°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.6,已知传送带从A→B的长度L=16m,则物体从A到B需要的时间为多少?
【审题】该题目的物理过程的前半段与例题1是一样的,但是到了物体和传送带有相同速度时,情况就不同了,经计算,若物体和传送带之间的最大静摩擦力大于重力的下滑分力,物体将和传送带相对静止一起向下匀速运动,所受静摩擦力沿斜面向上,大小等于重力的下滑分力。
【解析】物体放上传送带以后,开始一段时间,其运动加速度。这样的加速度只能维持到物体的速度达到10m/s为止,其对应的时间和位移分别为:<16m,以后物体受到的摩擦力变为沿传送带向上,其加速度大小为零(因为mgsinθ<μmgcosθ)。设物体完成剩余的位移所用的时间为,
则,16m-5.91m=,解得:所以:。
【总结】关键要分析各阶段物体所受摩擦力的大小和方向,μ>tanθ=,第二阶段物体将和传送带相对静止一起向下匀速运动。
例3:如图2—3所示,传送带与地面成夹角θ=37°,以10m/s的速度逆时针转动,在传送带上端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.5,已知传送带从A→B的长度L=5m,则物体从A到B需要的时间为多少?
【审题】该题目的物理过程的前半段与例题1是一样的,由于传送带比较短,物体将一直加速运动。
【解析】物体放上传送带以后,开始一段时间,其运动加速度。
这样的加速度只能维持到物体的速度达到10m/s为止,其对应的时间和位移分别为:,此时物休刚好滑到传送带的低端。所以:。
【总结】该题目的关键就是要分析好第一阶段的运动位移,看是否还要分析第二阶段。
例题4:如图2—4所示,传送带与地面成夹角θ=37°,以10m/s的速度顺时针转动,在传送带下端轻轻地放一个质量m=0.5㎏的物体,它与传送带间的动摩擦因数μ=0.9,已知传送带从A→B的长度L=50m,则物体从A到B需要的时间为多少?
【审题】传送带沿顺时针转动,与物体接触处的速度方向斜向上,物体初速度为零,所以物体相对传送带向下滑动(相对地面是斜向上运动的),因此受到沿斜面向上的滑动摩擦力作用,这样物体在沿斜面方向上所受的合力为重力的下滑分力和向上的滑动摩擦力,因此物体要向上做匀加速运动。当物体加速到与传送带有相同速度时,摩擦力情况要发生变化,此时有μ≥tanθ,则物体将和传送带相对静止一起向上匀速运动,所受静摩擦力沿斜面向上,大小等于重力的下滑分力。
【解析】物体放上传送带以后,开始一段时间,其运动加速度。这样的加速度只能维持到物体的速度达到10m/s为止,其对应的时间和位移分别为:<50m,以后物体受到的摩擦力变为沿传送带向上,其加速度大小为零(因为mgsinθ<μmgcosθ)。设物体完成剩余的位移所用的时间为,则,50m-41.67m= 解得:,所以:。
【总结】关键分析各阶段物体受摩擦力的大小和方向,对物体加速到与传送带有相同速度时,是否已经到达传送带顶端进行判断。
本题的一种错解就是: 所以:=9.13s,该时间小于正确结果16.66s,是因为物体加速到10m/s时,以后的运动是匀速运动,而错误结果是让物体一直加速运动,经过相同的位移,所用时间就应该短。
突破难点2
第2个难点是对于物体相对地面、相对传送带分别做什么样的运动,判断错误。
对轻轻放到运动的传送带上的物体,由于相对传送带向后滑动,受到沿传送带运动方向的滑动摩擦力作用,决定了物体将在传送带所给的滑动摩擦力作用下,做匀加速运动,直到物体达到与皮带相同的速度,不再受摩擦力,而随传送带一起做匀速直线运动。传送带一直做匀速直线运动,要想再把两者结合起来看,则需画一运动过程的位移关系图。
如图2—5甲所示,A、B分别是传送带上和物体上的一点,刚放上物体时,两点重合。设皮带的速度为V0,物体做初速为零的匀加速直线运动,末速为V0,其平均速度为V0/2,所以物体的对地位移x物=,传送带对地位移x传送带=V0t,所以A、B两点分别运动到如图2—5乙所示的A'、B'位置,物体相对传送带的位移也就显而易见了,x物=,就是图乙中的A'、B'间的距离,即传送带比物体多运动的距离,也就是物体在传送带上所留下的划痕的长度。
例题6:一水平的浅色长传送带上放置一煤块(可视为质点),煤块与传送带之间的动摩擦因数为。初始时,传送带与煤块都是静止的。现让传送带以恒定的加速度a0开始运动,当其速度达到v0后,便以此速度做匀速运动。经过一段时间,煤块在传送带上留下了一段黑色痕迹后,煤块相对于传送带不再滑动。求此黑色痕迹的长度。
【审题】传送带开始阶段也做匀加速运动了,后来又改为匀速,物体的运动情况则受传送带的运动情况制约,由题意可知,只有μg<a0才能相对传送带滑动,否则物体将与传送带一直相对静止。【解析】方法一:根据“传送带上有黑色痕迹”可知,煤块与传送带之间发生了相对滑动,煤块的加速度a小于传送带的加速度a0。根据牛顿运动定律,可得,设经历时间t,传送带由静止开始加速到速度等于v0,煤块则由静止加速到v,有,,由于a 【总结】本题题目中明确写道:“经过一段时间,煤块在传送带上留下一段黑色痕迹后,煤块相对于传送带不再滑动。”这就说明第一阶段传送带的加速度大于煤块的加速度。当传送带速度达到时,煤块速度,此过程中传送带的位移大于煤块的位移。接下来煤块还要继续加速到,传送带则以做匀速运动。两阶段的物体位移之差即为痕迹长度。 例7:一小圆盘静止在桌布上,位于一方桌的水平桌面的。桌布的一边与桌的AB边重合,如图2—7,已知盘与桌布间的动摩擦因数为μl,盘与桌面间的动摩擦因数为μ2。现突然以恒定加速度a将桌布抽离桌面,加速度方向是水平的且垂直于AB边。若圆盘最后未从桌面掉下,则加速度a满足的条件是什么? 【审题】可以将题中复杂的物理过程拆散分解为如下3个小过程。过程1:圆盘从静止开始在桌布上做匀加速运动至刚离开桌布的过程;过程2:桌布从突然以恒定加速度a开始抽动至圆盘刚离开桌布这段时间内做匀加速运动的过程;过程3:圆盘离开桌布后在桌面上做匀减速直线运动的过程。 设桌面长为L,开始时,桌布、圆盘在桌面上的位置如图2—8甲所示; 圆盘位于桌面的,桌布的最左边位于桌面的左边处。由于桌布要从圆盘下抽出,桌布与圆盘之间必有相对滑动,圆盘在摩擦力作用下有加速度,其加速度a1应小于桌布的加速度a,但两者的方向是相同的。当桌布与圆盘刚分离时,圆盘与桌布的位置如图2—8乙所示。圆盘向右加速运动的距离为x1,桌布向右加速运动的距离为L+x1。圆盘离开桌布后,在桌面上作加速度为a2的减速运动直到停下,因盘未从桌面掉下,故而盘作减速运动直到停下所运动的距离为x2,不能超过L-x1。通过分析并画出图丙。 【解析】 1.由牛顿第二定律:μlmg=mal①,由运动学知识:v12=2al x1②,2.桌布从突然以恒定加速度a开始抽动至圆盘刚离开桌布这段时间内做匀加速运动的过程。设桌布从盘下抽出所经历时间为t,在这段时间内桌布移动的距离为x1,由运动学知识:x =at2 ③,x1=a1t2④,而x=L+x1⑤。3.圆盘离开桌布后在桌面上做匀减速直线运动的过程。设圆盘离开桌布后在桌面上作匀减速运动,以a2表示加速度的大小,运动x2后便停下,由牛顿第二定律:μ2mg=ma2 ⑥,由运动学知识:v12=2a2 x2⑦,盘没有从桌面上掉下的条件是:x2≤L—x1 ⑧,由以上各式解得:≥⑨。下载本文