视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2011年高考新课标Ⅱ理科数学试题及答案(精校版,解析版,word版)
2025-09-23 15:35:05 责编:小OO
文档
2011年普通高等学校招生全国统一考试(新课标Ⅱ卷)

理 科 数 学

第Ⅰ卷

一、选择题:(本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的.)

1.复数的共轭复数是(    )

A.            B.            C.            D. 

2.下列函数中,既是偶函数又在单调递增的函数是(  )

A. B. C.    D. 

3.执行右面的程序框图,如果输入的N是6,那么输出的p是( )

A.120      

B.720      

C.1440     

D.5040

4.有3个兴趣小组,甲、乙两位同学各自参加其中一个小组,每位同学参加各个小组的可能性相同,则这两位同学参加同一个兴趣小组的概率为(    )

A.            B.            C.            D. 

5.已知角θ的顶点与原点重合,始边与x轴的正半轴重合,终边在直线y=2x上,则cos2θ=( )

A.            B.            C.            D. 

6.在一个几何体的三视图中,正视图和俯视图如右图所示,则相应的侧视图可以为(    )

A.               B.              C.              D.

7.设直线l过双曲线C的一个焦点,且与C的一条对称轴垂直,l与C交于A, B两点,|AB|为C的实轴长的2倍,则C的离心率为(    )

A.            B.            C.2            D.3

8.的展开式中各项系数的和为2,则该展开式中常数项为(    )

A.- 40            B.- 20            C.20            D.40

9.由曲线,直线及y轴所围成的图形的面积为(    )

A.            B.4            C.            D.6

10.已知a与b均为单位向量,其夹角为θ,有下列四个命题中真命题是(    )

                

                

A.    P1,P4        B.P1,P3        C.P2,P3        D.P2,P4

11.设函数的最小正周期为,且,则(   )

A.在单调递减        B.在单调递减

C.在单调递增            D.在单调递增

12.函数的图像与函数的图像所有交点的横坐标之和等于(    )

A.2            B.4            C.6            D.8

第Ⅱ卷

本卷包括必考题和选考题两部分. 第13题~第21题为必考题,每个试题考生必须做答. 第22题~第24题为选考题,考生根据要求做答.

二、填空题:(本大题共4小题,每小题5分.)

13.若变量x, y满足约束条件,则的最小值为          .

14.在平面直角坐标系xoy中,椭圆C的中心为原点,焦点F1,F2在x轴上,离心率为.过F1的直线l交C于A,B两点,且△ABF2的周长为16,那么C的方程为          .

15.已知矩形ABCD的顶点都在半径为4的球O的球面上,且,则棱锥O-ABCD的体积为          .

16.在△ABC中,,则的最大值为          .

三、解答题:(解答应写出文字说明,证明过程或演算步骤.)

17.(满分12分)等比数列的各项均为正数,且

(Ⅰ)求数列的通项公式;

(Ⅱ)设,求数列的前n项和.

18.(满分12分)如图,四棱锥P-ABCD中,底面ABCD为平行四边形,∠DAB=60°,AB=2AD,PD⊥底面ABCD.

(Ⅰ)证明:PA⊥BD;

(Ⅱ)若PD=AD,求二面角A-PB-C的余弦值.

19.(满分12分)某种产品的质量以其质量指标值衡量,质量指标值越大表明质量越好,且质量指标值大于或等于102的产品为优质品,现用两种新配方(分别称为A配方和B配方)做试验,各生产了100件这种产品,并测量了每件产品的质量指标值,得到下面试验结果:            A配方的频数分布表

指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]
频数82042228
B配方的频数分布表

指标值分组[90,94)[94,98)[98,102)[102,106)[106,110]
频数412423210
(Ⅰ)分别估计用A配方,B配方生产的产品的优质品率;

(Ⅱ)已知用B配方生成的一件产品的利润y(单位:元)与其质量指标值t的关系式为,从用B配方生产的产品中任取一件,其利润记为X(单位:元),求X的分布列及数学期望.(以试验结果中质量指标值落入各组的频率作为一件产品的质量指标值落入相应组的概率)

20.(满分12分)在平面直角坐标系xOy中,已知点A(0, -1),B点在直线y =-3上,M点满足,,M点的轨迹为曲线C .

(Ⅰ)求C的方程;

(Ⅱ)P为C上的动点,l为C在P点处得切线,求O点到l距离的最小值 .

21.(满分12分)已知函数,曲线在点处的切线方程为.

(Ⅰ)求a、b的值;

(Ⅱ)如果当,且时,,求k的取值范围.

请考生在第22、23、24题中任选一题做答,如果多做,按所做的第一题计分,做答时请写清题号.

22.(满分10分)【选修4-1:几何证明选讲】

如图,D,E分别为△ABC的边AB,AC上的点,且不与△ABC的顶点重合. 已知AE的长为m,AC的长为n,AD,AB的长是关于x的方程x2-14x+mn=0的两个根.

(Ⅰ)证明:C、B、D、E四点共圆;

(Ⅱ)若∠A=90º,且m=4,n=6,求C、B、D、E所在圆的半径.

23.(满分10分)【选修4-4:坐标系与参数方程】

在直角坐标系xOy 中,曲线C1的参数方程为(为参数),M是C1上的动点,P点满足,P点的轨迹为曲线C2.

(Ⅰ)求C2的方程;

(Ⅱ)在以O为极点,x 轴的正半轴为极轴的极坐标系中,射线与C1的异于极点的交点为A,与C2的异于极点的交点为B,求|AB|.

24.(满分10分)【选修4-5:不等式选讲】

设函数,其中.

(Ⅰ)当时,求不等式的解集;

(Ⅱ)若不等式的解集为,求a的值.

2011年普通高等学校招生全国统一考试(新课标Ⅱ卷)

理 科 数 学(参)

一、选择题:

1.【答案C】

解析:=共轭复数为C.

2. 【答案B】

解析:由图像知选B.

3. 【答案B】

解析:框图表示,且所求720,故选B.

4. 【答案A】

解析:每个同学参加的情形都有3种,故两个同学参加一组的情形有9种,而参加同一组的情形只有3种,所求的概率为P=,故选A. 

5. 【答案B】

解析:由题知,,故选B.

6. 【答案D】

解析:条件对应的几何体是由底面棱长为r的正四棱锥沿底面对角线截出的部分与底面为半径为r的圆锥沿对称轴截出的部分构成的. 故选D.

7. 【答案B】

解析:通径|AB|=得,故选B.

8. 【答案D】

解析:由的展开式中各项系数的和为2,得a=1(令x=1).  故原式=,所以通项,由5-2r=1得r=2,对应的常数项=80,由5-2r=-1得r=3,对应的常数项=-40,故所求的常数项为40,故选D .

9. 【答案C】

解析:用定积分求解,故选C.

10. 【答案A】

解析:由得. 由得,故选A.

11. 【答案A】

解析:的最小正周期为π,所以,又,∴ f (x)为偶函数,,,故选A.

12. 【答案D】

解析:的对称中心是(1,0)也是的中心,他们的图像在x=1的左侧有4个交点,则x=1右侧必有4个交点. 不妨把他们的横坐标由小到大设为x1,x2,x3,x4,x5,x6,x7,x8,则,故选D .

二、填空题:

13. 【答案-6】

解析:画出可行域如图,当直线过的交点(4,-5)时,.

14. 【答案】

解析:由得a=4,c=,从而b=8,.

15.【答案】

解析:设ABCD所在的截面圆的圆心为M,则AM=,OM=,.

16.【答案】

解析:,,,, ,故最大值是 .

三、解答题:

17.解析:(Ⅰ)设数列{an}的公比为q,由得所以. 由条件可知a>0,故. 由得,所以. 故数列{an}的通项式为.

(Ⅱ ),故,,所以数列的前n项和为.

18.解析:(Ⅰ)因为,由余弦定理得,从而BD2+AD2= AB2,故BDAD,又PD底面ABCD,可得BDPD,所以BD平面PAD,故 PABD.

(Ⅱ)如图,以D为坐标原点,AD的长为单位长,射线DA为轴的正半轴建立空间直角坐标系D-xyz,则,,,., ,设平面PAB的法向量为n=(x, y, z),则,即,因此可取,设平面PBC的法向量为m,则,可取,,故二面角A-PB-C的余弦值为.

19.解析:(Ⅰ)由试验结果知,用A配方生产的产品中优质的平率为,所以用A配方生产的产品的优质品率的估计值为0.3 . 由试验结果知,用B配方生产的产品中优质品的频率为,所以用B配方生产的产品的优质品率的估计值为0.42 .

(Ⅱ)用B配方生产的100件产品中,其质量指标值落入区间[90, 94), [94, 102), [102, 110]的频率分别为0.04,0.54,0.42,因此 P(X=-2)=0.04,P(X=2)=0.54,P(X=4)=0.42, 即X的分布列为

X-2

24
P0.040.540.42
X的数学期望值E(X)=-2×0.04+2×0.54+4×0.42=2.68 .

20.解析:(Ⅰ)设M(x, y),由已知得B(x, -3),A(0, -1). 所以,,. 再由题意可知,即. 所以曲线C的方程式为.

(Ⅱ)设P(x0, y0)为曲线C:上一点,因为,所以l的斜率为,因此直线l的方程为,即. 则O点到l的距离. 又,所以,当=0时取等号,所以O点到l距离的最小值为2.

21.解析:(Ⅰ)由于直线的斜率为,且过点,故,即,解得,.

(Ⅱ)由(Ⅰ)知,所以.考虑函数,则.

(i)设,由知,当时,. 而,故当时,,可得;当x (1,+)时,h(x)<0,可得,从而当x>0,且x1时,,即.

(ii)设00,故h´(x)>0,而h(1)=0,故当x (1,)时,h(x)>0,可得h(x)<0,与题设矛盾.

(iii)设k1. 此时h´(x)>0,而h(1)=0,故当x (1,+)时,h(x)>0,可得h(x)<0,与题设矛盾. 

综上可得,k的取值范围为(-,0].

22.解析:(Ⅰ)连结DE,根据题意在△ADE和△ACB中,AD×AB=mn=AE×AC,即,又∠DAE=∠CAB,从而△ADE∽△ACB,因此∠ADE=∠ACB,所以C、B、D、E四点共圆.

(Ⅱ)m=4,n=6,方程x2-14x+mn=0的两根为2,12. 即AD=2,AB=12,取CE的中点G,DB的中点F,分别过G、F作AC、AB的垂线,两垂线交于点H,连结D、H,因为C、B、D、E四点共圆,所以圆心为H,半径为DH. 由于∠A=90º,故GH∥AB,HF∥AC. 从而HF=AG=5,DF=5,故半径为.

23.解析:(I)设P(x, y),则由条件知. 由于M点在C1上,所以,即,从而C2的参数方程为(为参数).

(Ⅱ)曲线C1的极坐标方程为,曲线C2的极坐标方程为. 射线与C1的交点A的极径为,射线与C2的交点B的极径为. 所以.

24.解析:(Ⅰ)当时,可化为. 由此可得或. 故不等式的解集为或.

(Ⅱ)由得,此不等式化为不等式组或,即或,因为,所以不等式组的解集为,由题设可得,故.下载本文

显示全文
专题