视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
七年级下册数学选择题
2025-09-24 11:07:50 责编:小OO
文档
2018年七下数学易错题汇总

一.选择题(共40小题)

1.如图,AB∥CD,直线EF与AB,CD分别交于点E,F,FG平分∠EFD,交AB于点G,若∠1=72°,则∠2的度数为(  )

A.36°    B.30°    C.34°    D.33°

2.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为(  )

A.34°    B.54°    C.56°    D.66°

3.如图,AB∥CD,点E在线段BC上,若∠2=70°,∠3=30°,则∠1的度数是(  )

A.30°    B.40°    C.50°    D.60°

4.如图,a∥b,含30°角的三角板的直角顶点在直线b上,一个锐角的顶点在直线a上,若∠1=20°,则∠2的度数是(  )

A.20°    B.40°    C.50°    D.60°

5.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于(  )

A.75°    B.90°    C.105°    D.115°

6.如图,已知a∥b,∠1=120°,∠2=90°,则∠3的度数是(  )

A.120°    B.130°    C.140°    D.150°

7.如图,直线AB∥CE,∠B=100°,∠F=40°,则∠E=(  )

A.50°    B.60°    C.70°    D.80°

8.下列说法正确的是(  )

A.的平方根是5    B.8的立方根是±2

C.﹣1000的立方根是﹣10    D.=±8

9.下列结论中不正确的是(  )

A.平方为9的数是+3或﹣3    

B.立方为27的数是3或﹣3

C.绝对值为3的数是3或﹣3    

D.倒数等于原数的数是1或﹣1

10.的算术平方根是(  )

A.3    B.﹣3    C.    D.81

11.﹣的平方根是(  )

A.±4    B.2    C.±2    D.不存在

12.与数轴上的点一一对应的是(  )

A.有理数    B.无理数    C.整数    D.实数

13.下列写法错误的是(  )

A.=±    B.±=±

C.=﹣10       D.

14.下列结论正确的是(  )

A.    B.  C.    D.

15.已知点M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是(  )

A.(4,2)或(﹣4,2)    

B.(4,﹣2)或(﹣4,﹣2)    

C.(4,﹣2)或(﹣5,﹣2)    

D.(4,﹣2)或(﹣1,﹣2)

16.如图,科技兴趣小组爱好编程的同学编了个电子跳蛙程序,跳蛙P在平面直角坐标系中按图中箭头所示方向跳动,第1次从原点跳到点(1,1),第2次接着跳到点(2,0),第3次接着跳到点(3,2),…,按这样的跳动规律,经过第2017次跳动后,跳蛙P的坐标是(  )

A.(2016,1)    B.(2016,2)    

C.(2017,1)    D.(2017,2)

17.已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是(  )

A.a<﹣1    B.a>    

C.﹣<a<1    D.﹣1<a<

18.在平面直角坐标系中,点(﹣3,m2+1)一定在(  )

A.第四象限    B.第三象限    

C.第二象限    D.第一象限

19.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是(  )

A.(13,13)    B.(﹣13,﹣13)    

C.(14,14)    D.(﹣14,﹣14)

20.已知是二元一次方程组的解,则的算术平方根为(  )

A.±3    B.3    C.    D.

21.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为(  )

A.       B.   C.       D.

22.关于x、y的方程组的解是,则(m﹣n)2等于(  )

A.25    B.3    C.4    D.1

23.方程组的解是,则(  )

A.    B.    C.    D.

24.二元一次方程x+3y=10的非负整数解共有(  )对.

A.1    B.2    C.3    D.4

25.若关于x,y的方程组有非负整数解,则正整数m为(  )

A.0,1    B.1,3,7    C.0,1,3    D.1,3

26.如果方程组的解是方程3x﹣5y﹣28=0的一个解,则a=(  )

A.    B.3    C.7    D.6

27.不等式组的解集在数轴上表示为(  )

A.

B.    

C.

D.

28.下列命题中,正确的是(  )

A.若a>b,则ac2>bc2    

B.若a>b,c=d则ac>bd

C.若ac2>bc2,则a>b    

D.若a>b,c<d则

29.若a>b,则下列不等式的变形错误的是(  )

A.﹣8+a>﹣8+b    B.﹣3a>﹣3b   

C.a+5>b+5     D.>

30.不等式4(x﹣2)>2(3x﹣7)的非负整数解的个数为(  )

A.0个    B.1个    C.2个    D.3个

31.不等式(a﹣3)x>1的解集是x<,则a的取值范围是(  )

A.a<0    B.a>0    C.a>3    D.a<3

32.下列命题中:①若a>b,c≠0,则ac>bc;②若,则a<0,b>0;③若ac2>bc2,则a>b;④若a<b<0,则;⑤若,则a>b.正确的有(  )个.

A.1个    B.2个    C.3个    D.4个

33.百货商场有一种商品的合格率为97%,已知该商品有400件,请问该商场至少还需准备(  )件商品供消费者更换.

A.9个    B.15个    C.12个    D.13个

34.奥运会十米跳台跳水比赛的规则是:每个跳水运动员有十次跳水机会,每次的最高得分是100分,按最终得分决定名次.某运动员前7次跳水共得580分,如果他要打破850分的奥运会纪录,第8次跳水不能少于(  )

A.60分    B.70分    C.80分    D.100分

35.下列调查中,调查方式选择合理的是(  )

A.为了解襄阳市初中生每天锻炼所用的时间,选择全面调查

B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查

C.为了解神舟飞船设备零件的质量情况,选择抽样调查

D.为了解一批节能灯的使用寿命,选择抽样调查

36.下列调查中,适宜采用普查方式的是(  )

A.了解一批圆珠笔的寿命      

B.了解全国九年级学生身高的现状

C.考察人们保护海洋的意识     

D.检查一枚用于发射卫星的运载火箭的各零部件

37.下列选项中,显示部分在总体中所占百分比的统计图是(  )

A.扇形图    B.条形图    C.折线图    D.直方图

38.下列调查,样本具有代表性的是(  )

A.了解全校同学对课程的喜欢情况,对某班男同学进行调查

B.了解某小区居民的防火意识,对你们班同学进行调查

C.了解商场的平均日营业额,选在周末进行调查

D.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查

39.为了解学生动地课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计,图(1)与图(2)是整理数据后绘制的两幅不完整的统计图,以下结论不正确的是(  )

A.由这两个统计图可知喜欢“科学常识”的学生有90人

B.若概年级共有12000名学生,则由这两个统计图可估计喜爱“科学常识”的学生有3600人

C.在扇形统计图汇总“漫画”所在扇形的圆心角为72°

D.由这两个统计图不能确定喜欢”小说”的人数

40.如果不等式组恰有3个整数解,则a的取值范围是(  )

A.a≤﹣1           B.a<﹣1    

C.﹣2≤a<﹣1    D.﹣2<a≤﹣1

参:

1-10 ACBCC DBCBC    11-20CDDAB CBCCC

21-30 ACBDD AACBD   31-40 DCDBD DADDC

2018年七下数学易错题汇总

参与试题解析

一.选择题(共40小题)

1.如图,AB∥CD,直线EF与AB,CD分别交于点E,F,FG平分∠EFD,交AB于点G,若∠1=72°,则∠2的度数为(  )

A.36°    B.30°    C.34°    D.33°

【分析】先根据角平分线的定义求出∠GFD的度数,再由平行线的性质即可得出结论.

【解答】解:∵AB∥CD,

∴∠1=∠EFD=72°,

∵FG平分∠EFD,∠EFD=72°,

∴∠GFD=∠EFD=×72°=36°,

∵AB∥CD,

∴∠2=∠GFD=36°.

故选:A.

【点评】本题考查的是平行线的性质,用到的知识点为;两直线平行,内错角相等.

2.如图,a∥b,点B在直线b上,且AB⊥BC,若∠1=34°,则∠2的大小为(  )

A.34°    B.54°    C.56°    D.66°

【分析】先根据平行线的性质,得出∠1=∠3=34°,再根据AB⊥BC,即可得到∠2=90°﹣34°=56°.

【解答】解:∵a∥b,

∴∠1=∠3=34°,

又∵AB⊥BC,

∴∠2=90°﹣34°=56°,

故选:C.

【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.

3.如图,AB∥CD,点E在线段BC上,若∠2=70°,∠3=30°,则∠1的度数是(  )

A.30°    B.40°    C.50°    D.60°

【分析】先根据三角形外角的性质求出∠C的度数,再由平行线的性质即可得出∠1的度数.

【解答】解:∵∠2是△CDE的外角,

∴∠C=∠2﹣∠3=70°﹣30°=40°.

∵AB∥CD,

∴∠1=∠C=40°.

故选:B.

【点评】本题考查的是平行线的性质以及三角形外角性质的运用,用到的知识点为:两直线平行,内错角相等.

4.如图,a∥b,含30°角的三角板的直角顶点在直线b上,一个锐角的顶点在直线a上,若∠1=20°,则∠2的度数是(  )

A.20°    B.40°    C.50°    D.60°

【分析】根据a∥b,即可得到∠3=∠2,由三角形外角性质,可得∠3=∠1+30°=20°+30°=50°,进而得到∠2的度数.

【解答】解:如图,∵a∥b,

∴∠3=∠2,

由三角形外角性质,可得∠3=∠1+30°=20°+30°=50°,

∴∠2=50°,

故选:C.

【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,同位角相等.

5.将一副三角板(∠A=30°)按如图所示方式摆放,使得AB∥EF,则∠1等于(  )

A.75°    B.90°    C.105°    D.115°

【分析】依据AB∥EF,即可得∠BDE=∠E=45°,再根据∠A=30°,可得∠B=60°,利用三角形外角性质,即可得到∠1=∠BDE+∠B=105°.

【解答】解:∵AB∥EF,

∴∠BDE=∠E=45°,

又∵∠A=30°,

∴∠B=60°,

∴∠1=∠BDE+∠B=45°+60°=105°,

故选:C.

【点评】本题主要考查了平行线的性质,解题时注意:两直线平行,内错角相等.

6.如图,已知a∥b,∠1=120°,∠2=90°,则∠3的度数是(  )

A.120°    B.130°    C.140°    D.150°

【分析】延长∠1的边与直线b相交,然后根据两直线平行,同旁内角互补求出∠4,再根据三角形的一个外角等于与它不相邻的两个内角的和列式计算即可得解.

【解答】解:如图,延长∠1的边与直线b相交,

∵a∥b,

∴∠4=180°﹣∠1=180°﹣120°=60°,

由三角形的外角性质,可得

∠3=90°+∠4=90°+60°=150°,

故选:D.

【点评】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记各性质并作出辅助线是解题的关键.

7.如图,直线AB∥CE,∠B=100°,∠F=40°,则∠E=(  )

A.50°    B.60°    C.70°    D.80°

【分析】根据平行线的性质求出∠FDC,再根据三角形外角的性质即可求出∠E.

【解答】解:∵直线AB∥CD,∠B=100°,

∴∠FDC=100°,

又∵∠FDC是△DEF的外角,

∴∠E=∠FDC﹣∠F=100°﹣40°=60°,

故选:B.

【点评】本题考查了三角形外角性质,平行线的性质的应用,解题时注意:两直线平行,同位角相等.

8.下列说法正确的是(  )

A.的平方根是5    B.8的立方根是±2

C.﹣1000的立方根是﹣10    D.=±8

【分析】根据平方根、立方根的意义逐一排除得到结论

【解答】解:因为=5,5的平方根是±,故选项A错误;

8的立方根是2,故选项B错误;

﹣1000的立方根是﹣10,故选项C正确;

=8≠±8,故选项D错误.

故选:C.

【点评】本题考查了平方根、立方根的意义及平方根的化简.一个正数有一个正的立方根,一个负数有一个负的立方根,0的立方根是0;一个正数有两个平方根,它们互为相反数,0的平方根是0,负数没有平方根.

9.下列结论中不正确的是(  )

A.平方为9的数是+3或﹣3    B.立方为27的数是3或﹣3

C.绝对值为3的数是3或﹣3    D.倒数等于原数的数是1或﹣1

【分析】A、根据平方根的定义即可判定;

B、根据立方根的定义即可判定;

C、根据绝对值的定义即可判定;

D、根据倒数的定义即可判定.

【解答】解:A、平方为9的数是+3或﹣3,故选项正确;

B、立方为27的数是3,故选项错误;

C、绝对值为3的数是3或﹣3,故选项正确;

D、倒数等于原数的数是1或﹣1,故选项正确.

故选:B.

【点评】此题主要考查了平方根、立方根、绝对值、倒数的定义,都是基础知识,解题时要求学生能够运用这些知识才能很好解决问题.

10.的算术平方根是(  )

A.3    B.﹣3    C.    D.81

【分析】先根据算术平方根的定义求出=3,再根据算术平方根的定答即可.

【解答】解:∵=3,

∴的算术平方根是.

故选:C.

【点评】本题考查了算术平方根的定义,熟记概念是解题的关键,易错点在于需要先求出=3.

11.﹣的平方根是(  )

A.±4    B.2    C.±2    D.不存在

【分析】本题应先计算出﹣的值,再根据平方根的定义即可求得平方根.

【解答】解:∵(﹣4)3=﹣

∴﹣=4

又∵(±2)2=4

∴4的平方根为±2.

故选:C.

【点评】本题考查了平方根的定义.注意一个正数有两个平方根,它们互为相反数;0的平方根是0;负数没有平方根.

12.与数轴上的点一一对应的是(  )

A.有理数    B.无理数    C.整数    D.实数

【分析】根据实数都可以用数轴上的点来表示,数轴上的点都表示一个实数,进行填空.

【解答】解:与数轴上的点一一对应的是实数.

故选:D.

【点评】此题考查了实数与数轴,解决本题的关键是掌握实数和数轴上的点之间的一一对应关系.

13.下列写法错误的是(  )

A.=±    B.±=±    C.=﹣10    D.

【分析】A、B、C、D根据平方根的定义即可判定,尤其要利用:正数的平方根有2个,其中正的平方根叫这个数的算术平方根.

【解答】解:A、B、C选项都正确;

D、∵=9,故选项错误;

故选:D.

【点评】此题主要考查了平方根、算术平方根定义,解决此题的关键是理解算术平方根必须是正数,注意平方根和算术平方根的区别.

14.下列结论正确的是(  )

A.    B.

C.    D.

【分析】根据平方,算术平方根分别进行计算,即可解答.

【解答】解:A.因为,故本选项正确;

B.因为=3,故本选项错误;

C.因为,故本选项错误;

D.因为,故本选项错误;

故选:A.

【点评】本题考查算术平方根,解决本题的关键是注意平方的计算以及符号问题.

15.已知点M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,且M′到y轴的距离等于4,那么点M′的坐标是(  )

A.(4,2)或(﹣4,2)    B.(4,﹣2)或(﹣4,﹣2)    C.(4,﹣2)或(﹣5,﹣2)    D.(4,﹣2)或(﹣1,﹣2)

【分析】由点M和M′在同一条平行于x轴的直线上,可得点M′的纵坐标;由“M′到y轴的距离等于4”可得,M′的横坐标为4或﹣4,即可确定M′的坐标.

【解答】解:∵M(3,﹣2)与点M′(x,y)在同一条平行于x轴的直线上,

∴M′的纵坐标y=﹣2,

∵“M′到y轴的距离等于4”,

∴M′的横坐标为4或﹣4.

所以点M′的坐标为(4,﹣2)或(﹣4,﹣2),故选B.

【点评】本题考查了点的坐标的确定,注意:由于没具体说出M′所在的象限,所以其坐标有两解,注意不要漏解.

16.如图,科技兴趣小组爱好编程的同学编了个电子跳蛙程序,跳蛙P在平面直角坐标系中按图中箭头所示方向跳动,第1次从原点跳到点(1,1),第2次接着跳到点(2,0),第3次接着跳到点(3,2),…,按这样的跳动规律,经过第2017次跳动后,跳蛙P的坐标是(  )

A.(2016,1)    B.(2016,2)    C.(2017,1)    D.(2017,2)

【分析】根据已知提供的数据从横纵坐标分别分析得出横坐标为跳动次数,纵坐标为1,0,2,0,每4次一轮这一规律,进而求出即可.

【解答】解:根据跳蛙P在平面直角坐标系中按图中箭头所示方向运动,第1次从原点跳动到点(1,1),

第2次接着跳动到点(2,0),第3次接着跳动到点(3,2),

∴第4次跳动到点(4,0),第5次接着跳动到点(5,1),…,

∴横坐标为跳动次数,经过第2017次跳动后,跳蛙P的横坐标为2017,

纵坐标为1,0,2,0,每4次一轮,

∴经过第2017次跳动后,跳蛙P的纵坐标为:2017÷4=504余1,

故纵坐标为四个数中第一个,即为1,

∴经过第2017次跳动后,跳蛙P的坐标是:(2017,1),

故选:C.

【点评】此题主要考查了点的坐标规律,培养学生观察和归纳能力,从所给的数据和图形中寻求规律进行解题是解答本题的关键.

17.已知点P(a+1,2a﹣3)在第一象限,则a的取值范围是(  )

A.a<﹣1    B.a>    C.﹣<a<1    D.﹣1<a<

【分析】让横坐标大于0,纵坐标大于0即可求得a的取值范围.

【解答】解:∵点P(a+1,2a﹣3)在第一象限,

∴,

解得:a,

故选:B.

【点评】考查了点的坐标、一元一次不等式组的解集的求法;用到的知识点为:第一象限点的横纵坐标均为正数.

18.在平面直角坐标系中,点(﹣3,m2+1)一定在(  )

A.第四象限    B.第三象限    C.第二象限    D.第一象限

【分析】根据平方数非负数的性质判断出m2+1≥1,再根据各象限内点的坐标特征解答.

【解答】解:∵m2≥0,

∴m2+1≥1,

∴点(﹣3,m2+1)一定在第二象限.

故选:C.

【点评】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(﹣,+);第三象限(﹣,﹣);第四象限(+,﹣).

19.如图,所有正方形的中心均在坐标原点,且各边与x轴或y轴平行.从内到外,它们的边长依次为2,4,6,8,…,顶点依次用A1,A2,A3,A4,…表示,则顶点A55的坐标是(  )

A.(13,13)    B.(﹣13,﹣13)    C.(14,14)    D.(﹣14,﹣14)

【分析】观察图象,每四个点一圈进行循环,每一圈第一个点在第三象限,根据点的脚标与坐标寻找规律.

【解答】解:∵55=4×13+3,∴A55与A3在同一象限,即都在第一象限,

根据题中图形中的规律可得:

3=4×0+3,A3的坐标为(0+1,0+1),即A3(1,1),

7=4×1+3,A7的坐标为(1+1,1+1),A7(2,2),

11=4×2+3,A11的坐标为(2+1,2+1),A11(3,3);

55=4×13+3,A55(14,14),A55的坐标为(13+1,13+1);

故选:C.

【点评】本题是一个阅读理解,猜想规律的题目,解答此题的关键是首先确定点所在的大致位置及所在的正方形,然后就可以进一步推得点的坐标.

20.已知是二元一次方程组的解,则的算术平方根为(  )

A.±3    B.3    C.    D.

【分析】将x与y的值代入方程组求出m与n的值,即可确定出的算术平方根.

【解答】解:将x=2,y=1代入方程组得:,

①+②×2得:5n=10,即n=2,

将n=2代入②得:4﹣m=1,即m=3,

∴m+3n=3+6=9,

则=3,3的算术平方根为.

故选:C.

【点评】此题考查了二元一次方程组的解,熟练掌握运算法则是解本题的关键.

21.现用190张铁皮做盒子,每张铁皮做8个盒身或做22个盒底,而一个盒身与两个盒底配成一个盒子,设用x张铁皮做盒身,y张铁皮做盒底,则可列方程组为(  )

A.    B.

C.    D.

【分析】此题中的等量关系有:①共有190张铁皮;

②做的盒底数等于盒身数的2倍时才能正好配套.

【解答】解:根据共有190张铁皮,得方程x+y=190;

根据做的盒底数等于盒身数的2倍时才能正好配套,得方程2×8x=22y.

列方程组为.

故选:A.

【点评】找准等量关系是解应用题的关键,寻找第二个相等关系是难点.

22.关于x、y的方程组的解是,则(m﹣n)2等于(  )

A.25    B.3    C.4    D.1

【分析】将x、y的值代入,可得关于m、n的二元一次方程组,解出m、n的值,代入代数式即可.

【解答】解:把代入方程组得:,

解得:

∴.

故选:C.

【点评】此题考查了二元一次方程组的解,解决本题的关键是解二元一次方程组.

23.方程组的解是,则(  )

A.    B.    C.    D.

【分析】把方程组的解代入方程组,得到关于a,b的方程组,解方程组即可.

【解答】解:把代入程组得;

解得:,

故选:B.

【点评】本题考查了二元一次方程组的解,解决本题的关键是解二元一次方程组.

24.二元一次方程x+3y=10的非负整数解共有(  )对.

A.1    B.2    C.3    D.4

【分析】由于二元一次方程x+3y=10中x的系数是1,可先用含y的代数式表示x,然后根据此方程的解是非负整数,那么把最小的非负整数y=0代入,算出对应的x的值,再把y=1代入,再算出对应的x的值,依此可以求出结果.

【解答】解:∵x+3y=10,

∴x=10﹣3y,

∵x、y都是非负整数,

∴y=0时,x=10;

y=1时,x=7;

y=2时,x=4;

y=3时,x=1.

∴二元一次方程x+3y=10的非负整数解共有4对.

故选:D.

【点评】由于任何一个二元一次方程都有无穷多个解,求满足二元一次方程的非负整数解,即此方程中两个未知数的值都是非负整数,这是解答本题的关键.

注意:最小的非负整数是0.

25.若关于x,y的方程组有非负整数解,则正整数m为(  )

A.0,1    B.1,3,7    C.0,1,3    D.1,3

【分析】根据y的系数互为相反数,利用加减消元法求出方程组的解,再根据解为非负整数列出不等式求解得到m的取值范围,然后写出符合条件的正整数即可.

【解答】解:,

①+②得,(m+1)x=8,

解得x=,

把x=代入①得,﹣y=2,

解得y=,

∵方程组的解是非负整数,

∴,

解不等式①得,m>﹣1,

解不等式②得,m≤3,

所以,﹣1<m≤3,

∵x、y是整数,

∴m+1是8的因数,

∴正整数m是1、3.

故选:D.

【点评】本题考查了二元一次方程组的解,解一元一次不等式,根据非负整数解列出不等式组求出m的取值范围是解题的关键,要注意整数的条件.

26.如果方程组的解是方程3x﹣5y﹣28=0的一个解,则a=(  )

A.    B.3    C.7    D.6

【分析】先解方程组,用含a的式子表示x,y的值,再代入方程3x﹣5y﹣28=0得关于a的方程,求解即可.

【解答】解:解方程组得.

代入方程3x﹣5y﹣28=0得10a+﹣28=0,解得a=.

故选:A.

【点评】此题主要考查了二元一次方程组解的定义.以及解二元一次方程组的基本方法.

27.不等式组的解集在数轴上表示为(  )

A.    B.    C.    D.

【分析】解不等式组,求出不等式组的解集,即可解答.

【解答】解:不等式组的解集为:﹣3<x≤1,

故选:A.

【点评】本题考查了在数轴上表示不等式的解集,把每个不等式的解集在数轴上表示出来(>,≥向右画;<,≤向左画),数轴上的点把数轴分成若干段,如果数轴的某一段上面表示解集的线的条数与不等式的个数一样,那么这段就是不等式组的解集.有几个就要几个.在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.

28.下列命题中,正确的是(  )

A.若a>b,则ac2>bc2    B.若a>b,c=d则ac>bd

C.若ac2>bc2,则a>b    D.若a>b,c<d则

【分析】代入一个特殊值计算比较即可.

【解答】解:根据不等式的基本性质可知:当c=0时,A,B,D都不成立;

因为c2>0,所以根据性质3可知:若ac2>bc2,则a>b,C正确;

故选:C.

【点评】代入特殊值进行比较可简化运算.

29.若a>b,则下列不等式的变形错误的是(  )

A.﹣8+a>﹣8+b    B.﹣3a>﹣3b

C.a+5>b+5    D.>

【分析】运用不等式的基本性质运算.

【解答】解:若a>b,

A、﹣8+a>﹣8+b,故A选项正确;

B、﹣3a>﹣3b,不等号的方向要改变,故B选项错误;

C、a+5>b+5,故C选项正确;

D、>,故D选项正确.

故选:B.

【点评】本题主要考查了不等式的基本性质,解题的关键是注意不等号的方向是否改变.

30.不等式4(x﹣2)>2(3x﹣7)的非负整数解的个数为(  )

A.0个    B.1个    C.2个    D.3个

【分析】首先利用不等式的基本性质解不等式,再从不等式的解集中找出非负整数解的个数.

【解答】解:去括号得:4x﹣8>6x﹣14,

移项得:﹣2x>﹣6,

解得:x<3,

则不等式的非负整数解为0,1,2,共3个.

故选:D.

【点评】本题考查了一元一次不等式的整数解,正确解不等式,求出解集是解答本题的关键.解不等式应根据不等式的基本性质.

31.不等式(a﹣3)x>1的解集是x<,则a的取值范围是(  )

A.a<0    B.a>0    C.a>3    D.a<3

【分析】根据不等式的性质2,不等式的两边都除以一个负数,不等号的方向改变,得出a﹣3<0,求出即可.

【解答】解:∵不等式(a﹣3)x>1的解集是x<,

∴a﹣3<0,

∴a<3,

故选:D.

【点评】本题考查了对不等式的性质和不等式的解集的理解和运用,注意:不等式的两边都乘以或除以一个负数,不等号的方向改变,题目比较好,是一道比较容易出错的题目.

32.下列命题中:①若a>b,c≠0,则ac>bc;②若,则a<0,b>0;③若ac2>bc2,则a>b;④若a<b<0,则;⑤若,则a>b.正确的有(  )个.

A.1个    B.2个    C.3个    D.4个

【分析】根据不等式的基本性质(①不等式两边加(或减)同一个数(或式子),不等号的方向不变;②不等式两边乘(或除以)同一个正数,不等号的方向不变;③不等式两边乘(或除以)同一个负数,不等号的方向改变)对各项进行一一判断.

【解答】解:①当c<0时,ac<bc;故本选项错误;

②若,则a、b异号,所以a<0,b>0;或a>0,b<0;故本选项错误;

③∵ac2>bc2,∴c2>0,∴a>b;故本选项正确;

④若a<b<0,则不等式的两边同时除以b,不等号的方向发生改变,即;故本选项正确;

⑤∵,∴c2>0,∴原不等式的两边同时乘以c2,不等式仍然成立,即a>b;故本选项正确.

综上所述,正确的说法共有3个.

故选:C.

【点评】主要考查了不等式的基本性质.“0”是很特殊的一个数,因此,解答不等式的问题时,应密切关注“0”存在与否,以防掉进“0”的陷阱.不等式的基本性质:

(1)不等式两边加(或减)同一个数(或式子),不等号的方向不变.

(2)不等式两边乘(或除以)同一个正数,不等号的方向不变.

(3)不等式两边乘(或除以)同一个负数,不等号的方向改变.

33.百货商场有一种商品的合格率为97%,已知该商品有400件,请问该商场至少还需准备(  )件商品供消费者更换.

A.9个    B.15个    C.12个    D.13个

【分析】解决问题的关键是读懂题意,找到关键描述语,进而找到所求的量的等量关系.

【解答】解:设至少还准备x件商品供消费者更换,

依题意可得(400+x)×97%≥400

解得:x≥12,又因为x取整数,则x最小是13.

故选:D.

【点评】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.

34.奥运会十米跳台跳水比赛的规则是:每个跳水运动员有十次跳水机会,每次的最高得分是100分,按最终得分决定名次.某运动员前7次跳水共得580分,如果他要打破850分的奥运会纪录,第8次跳水不能少于(  )

A.60分    B.70分    C.80分    D.100分

【分析】设不能少于x分,根据要打破850分的奥运会纪录,可列出不等式,解出即可.

【解答】解:设不能少于x分,

由题意得,580+x+100+100≥850,

解得:x≥70,

即第8次跳水不能少于70分.

故选:B.

【点评】本题考查了一元一次不等式的应用,注意只有第九次、第十次拿到最高分,才能求出第八次的最低得分.

35.下列调查中,调查方式选择合理的是(  )

A.为了解襄阳市初中生每天锻炼所用的时间,选择全面调查

B.为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择全面调查

C.为了解神舟飞船设备零件的质量情况,选择抽样调查

D.为了解一批节能灯的使用寿命,选择抽样调查

【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可.

【解答】解:A、为了解襄阳市初中每天锻炼所用时间,选择抽样调查,故A不符合题意;

B、为了解襄阳市电视台《襄阳新闻》栏目的收视率,选择抽样调查,故B不符合题意;

C、为了解神舟飞船设备零件的质量情况,选普查,故C不符合题意;

D、为了解一批节能灯的使用寿命,选择抽样调查,故D符合题意;

故选:D.

【点评】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查.

36.下列调查中,适宜采用普查方式的是(  )

A.了解一批圆珠笔的寿命

B.了解全国九年级学生身高的现状

C.考察人们保护海洋的意识

D.检查一枚用于发射卫星的运载火箭的各零部件

【分析】普查和抽样调查的选择.调查方式的选择需要将普查的局限性和抽样调查的必要性结合起来,具体问题具体分析,普查结果准确,所以在要求精确、难度相对不大,实验无破坏性的情况下应选择普查方式,当考查的对象很多或考查会给被调查对象带来损伤破坏,以及考查经费和时间都非常有限时,普查就受到,这时就应选择抽样调查.

【解答】解:A、了解一批圆珠笔芯的使用寿命,由于具有破坏性,应当使用抽样调查,故本选项错误;

B、了解全国九年级学生身高的现状,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;

C、考察人们保护海洋的意识,人数多,耗时长,应当采用抽样调查的方式,故本选项错误;

D、检查一枚用于发射卫星的运载火箭的各零部件,事关重大,应用普查方式,故本选项正确;

故选:D.

【点评】此题考查了抽样调查和全面调查,由普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似.

37.下列选项中,显示部分在总体中所占百分比的统计图是(  )

A.扇形图    B.条形图    C.折线图    D.直方图

【分析】根据统计图的特点进行分析可得:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目.

【解答】解:在进行数据描述时,要显示部分在总体中所占的百分比,应采用扇形统计图;

故选:A.

【点评】本题考查统计图的选择,解决本题的关键是明确:扇形统计图表示的是部分在总体中所占的百分比,但一般不能直接从图中得到具体的数据;

折线统计图表示的是事物的变化情况;条形统计图能清楚地表示出每个项目的具体数目;频率分布直方图,清楚显示在各个不同区间内取值,各组频率分布情况,易于显示各组之间频率的差别.

38.下列调查,样本具有代表性的是(  )

A.了解全校同学对课程的喜欢情况,对某班男同学进行调查

B.了解某小区居民的防火意识,对你们班同学进行调查

C.了解商场的平均日营业额,选在周末进行调查

D.了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查

【分析】抽取样本注意事项就是要考虑样本具有广泛性与代表性,所谓代表性,就是抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.

【解答】解:A、了解全校同学对课程的喜欢情况,对某班男同学进行调查,不具代表性、广泛性,故A错误;

B、了解某小区居民的防火意识,对你们班同学进行调查,调查不具代表性、广泛性,故B错误;

C、了解商场的平均日营业额,选在周末进行调查,调查不具有代表性、广泛性,故C错误;

D、了解观众对所看电影的评价情况,对座号是奇数号的观众进行调查,调查具有代表性、广泛性,故D正确.

故选:D.

【点评】样本具有代表性是指抽取的样本必须是随机的,即各个方面,各个层次的对象都要有所体现.

39.为了解学生动地课外阅读的喜好,某校从八年级随机抽取部分学生进行问卷调查,调查要求每人只选取一种喜欢的书籍,如果没有喜欢的书籍,则作“其它”类统计,图(1)与图(2)是整理数据后绘制的两幅不完整的统计图,以下结论不正确的是(  )

A.由这两个统计图可知喜欢“科学常识”的学生有90人

B.若概年级共有12000名学生,则由这两个统计图可估计喜爱“科学常识”的学生有3600人

C.在扇形统计图汇总“漫画”所在扇形的圆心角为72°

D.由这两个统计图不能确定喜欢”小说”的人数

【分析】首先根据“其它”类所占比例以及人数,进而求出总人数,即可得出喜好“科普常识”的学生人数,再利用样本估计总体得出该年级喜爱“科普常识”的学生总数,进而得出喜好“小说”的人数,以及“漫画”所在扇形的圆心角.

【解答】解:A、∵喜欢“其它”类的人数为:30人,扇形图中所占比例为:10%,

∴样本总数为:30÷10%=300(人),

∴喜好“科普常识”的学生有:300×30%=90(人),故此选项不符合题意;

B、若该年级共有12000名学生,则由这两个统计图可估计喜爱“科普常识”的学生约有:×90=3600(人),故此选项不符合题意;

C、“漫画”所在扇形的圆心角为:×360°=72°,故此选项不符合题意.

D、喜好“小说”的人数为:300﹣90﹣60﹣30=120(人),故此选项错误符合题意;

故选:D.

【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.

40.如果不等式组恰有3个整数解,则a的取值范围是(  )

A.a≤﹣1    B.a<﹣1    C.﹣2≤a<﹣1    D.﹣2<a≤﹣1

【分析】首先根据不等式组得出不等式组的解集为a<x<2,再由恰好有3个整数解可得a的取值范围.

【解答】解:如图,

由图象可知:不等式组恰有3个整数解,

需要满足条件:﹣2≤a<﹣1.

故选:C.

【点评】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大;同小取小;大小小大中间找;大大小小找不到.下载本文

显示全文
专题