视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
人教版高中数学知识点总结:新课标人教A版高中数学选修2-2知识点总结
2025-09-26 10:54:49 责编:小OO
文档
高中数学选修2-2知识点总结

第一章 导数及其应用

1.函数的平均变化率为

注1:其中是自变量的改变量,可正,可负,可零。

注2:函数的平均变化率可以看作是物体运动的平均速度。

2、导函数的概念:函数在处的瞬时变化率是,则称函数在点处可导,并把这个极限叫做在处的导数,记作或,即=.

3.函数的平均变化率的几何意义是割线的斜率;函数的导数的几何意义是切线的斜率。

4导数的背景(1)切线的斜率;(2)瞬时速度;(3)边际成本。

5、常见的函数导数和积分公式

函数导函数不定积分
0

————————

————————
6、常见的导数和定积分运算公式:若,均可导(可积),则有:

和差的导数运算
积的导数运算

特别地: 

商的导数运算

特别地: 

复合函数的导数
微积分基本定理                    (其中)

和差的积分运算

特别地:

积分的区间可加性
6.用导数求函数单调区间的步骤:①求函数f(x)的导数②令>0,解不等式,得x的范围就是递增区间.③令<0,解不等式,得x的范围,就是递减区间;[注]:求单调区间之前一定要先看原函数的定义域。

7.求可导函数f(x)的极值的步骤:(1)确定函数的定义域。(2) 求函数f(x)的导数(3)求方程=0的根(4) 用函数的导数为0的点,顺次将函数的定义区间分成若干小开区间,并列成表格,检查在方程根左右的值的符号,如果左正右负,那么f(x)在这个根处取得极大值;如果左负右正,那么f(x)在这个根处取得极小值;如果左右不改变符号,那么f(x)在这个根处无极值

8.利用导数求函数的最值的步骤:求在上的最大值与最小值的步骤如下: ⑴求在上的极值;⑵将的各极值与比较,其中最大的一个是最大值,最小的一个是最小值。[注]:实际问题的开区间唯一极值点就是所求的最值点;

9.求曲边梯形的思想和步骤:分割近似代替求和取极限    (“以直代曲”的思想)

10.定积分的性质

根据定积分的定义,不难得出定积分的如下性质:

性质1  

性质5 若,则

①推广: 

    ②推广: 

11定积分的取值情况:定积分的值可能取正值,也可能取负值,还可能是0.

( l )当对应的曲边梯形位于 x 轴上方时,定积分的值取正值,且等于x轴上方的图形面积;

(2)当对应的曲边梯形位于 x 轴下方时,定积分的值取负值,且等于x轴上方图形面积的相反数;

(3)当位于 x 轴上方的曲边梯形面积等于位于 x 轴下方的曲边梯形面积时,定积分的值为0,且等于x轴上方图形的面积减去下方的图形的面积. 

12.物理中常用的微积分知识(1)位移的导数为速度,速度的导数为加速度。(2)力的积分为功。

第二章 推理与证明

13.归纳推理的定义:从个别事实中推演出一般性的结论,像这样的推理通常称为归纳推理。

归纳推理是由部分到整体,由个别到一般的推理。

14.归纳推理的思维过程

大致如图: 

15.归纳推理的特点: ①归纳推理的前提是几个已知的特殊现象,归纳所得的结论是尚属未知的一般现象。②由归纳推理得到的结论具有猜测的性质,结论是否真实,还需经过逻辑证明和实验检验,因此,它不能作为数学证明的工具。③归纳推理是一种具有创造性的推理,通过归纳推理的猜想,可以作为进一步研究的起点,帮助人们发现问题和提出问题。

16.类比推理的定义:根据两个(或两类)对象之间在某些方面的相似或相同,推演出它们在其他方面也相似或相同,这样的推理称为类比推理。类比推理是由特殊到特殊的推理。

17.类比推理的思维过程

    

18.演绎推理的定义:演绎推理是根据已有的事实和正确的结论(包括定义、公理、定理等)按照严格的逻辑法则得到新结论的推理过程。演绎推理是由一般到特殊的推理。

19.演绎推理的主要形式:三段论

20.“三段论”可以表示为:①大前题:M是P②小前提:S是M ③结论:S是P。

    其中①是大前提,它提供了一个一般性的原理;②是小前提,它指出了一个特殊对象;③是结论,它是根据一般性原理,对特殊情况做出的判断。

21.直接证明是从命题的条件或结论出发,根据已知的定义、公理、定理,直接推证结论的真实性。直接证明包括综合法和分析法。

22.综合法就是“由因导果”,从已知条件出发,不断用必要条件代替前面的条件,直至推出要证的结论。

23.分析法就是从所要证明的结论出发,不断地用充分条件替换前面的条件或者一定成立的式子,可称为“由果索因”。要注意叙述的形式:要证A,只要证B,B应是A成立的充分条件. 分析法和综合法常结合使用,不要将它们割裂开。

24反证法:是指从否定的结论出发,经过逻辑推理,导出矛盾,证实结论的否定是错误的,从而肯定原结论是正确的证明方法。

25.反证法的一般步骤(1)假设命题结论不成立,即假设结论的反面成立; (2)从假设出发,经过推理论证,得出矛盾;(3)从矛盾判定假设不正确,即所求证命题正确。 

26常见的“结论词”与“反义词”

原结论词反义词原结论词反义词
至少有一个一个也没有对所有的x都成立

存在x使不成立

至多有一个至少有两个对任意x不成立

存在x使成立

至少有n个

至多有n-1个

p或q

至多有n个

至少有n+1个

p且q

27.反证法的思维方法:正难则反

28.归缪矛盾(1)与已知条件矛盾:(2)与已有公理、定理、定义矛盾; (3)自相矛盾.

29.数学归纳法(只能证明与正整数有关的数学命题)的步骤(1)证明:当n取第一个值时命题成立;(2)假设当n=k (k∈N*,且k≥n0)时命题成立,证明当n=k+1时命题也成立.由(1),(2)可知,命题对于从n0开始的所有正整数n都正确 [注]:常用于证明不完全归纳法推测所得命题的正确性的证明。

第三章 数系的扩充和复数的概念

30.复数的概念:形如a+bi的数叫做复数,其中i叫虚数单位,叫实部,叫虚部,数集叫做复数集。

规定: a=c且b=d,强调:两复数不能比较大小,只有相等或不相等。

31.数集的关系: 

32.复数的几何意义:复数与平面内的点或有序实数对一一对应。

33.复平面:根据复数相等的定义,任何一个复数,都可以由一个有序实数对唯一确定。由于有序实数对与平面直角坐标系中的点一一对应,因此复数集与平面直角坐标系中的点集之间可以建立一一对应。这个建立了直角坐标系来表示复数的平面叫做复平面,轴叫做实轴,轴叫做虚轴。实轴上的点都表示实数,除了原点外,虚轴上的点都表示纯虚数。

34.求复数的模(绝对值)与复数对应的向量的模叫做复数的模(也叫绝对值)记作。由模的定义可知: 

35.复数的加、减法运算及几何意义①复数的加、减法法则:,则。注:复数的加、减法运算也可以按向量的加、减法来进行。

②复数的乘法法则:。

③复数的除法法则:其中叫做实数化因子

36.共轭复数:两复数互为共轭复数,当时,它们叫做共轭虚数。

常见的运算规律

设是1的立方虚根,则, 下载本文

显示全文
专题