视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
silvaco教程
2025-09-26 11:01:20 责编:小OO
文档
§4  工艺及器件仿真工具SILVACO-TCAD

本章将向读者介绍如何使用SILVACO公司的TCAD工具ATHENA来进行工艺仿真以及ATLAS来进行器件仿真。假定读者已经熟悉了硅器件及电路的制造工艺以及MOSFET和BJT的基本概念。

4.1 使用ATHENA的NMOS工艺仿真

4.1.1 概述

本节介绍用ATHENA创建一个典型的MOSFET输入文件所需的基本操作。包括:

a. 创建一个好的仿真网格

b. 演示淀积操作

c. 演示几何刻蚀操作

d. 氧化、扩散、退火以及离子注入

e. 结构操作

f. 保存和加载结构信息

4.1.2 创建一个初始结构

1  定义初始直角网格

a. 输入UNIX命令: deckbuild-an&,以便在deckbuild交互模式下调用ATHENA。在短暂的延迟后,deckbuild主窗口将会出现。如图4.1所示,点击File目录下的Empty Document,清空DECKBUILD文本窗口;

图4.1  清空文本窗口

b. 在如图4.2所示的文本窗口中键入语句go Athena ;

图4.2  以“go athena”开始

接下来要明确网格。网格中的结点数对仿真的精确度和所需时间有着直接的影响。仿真结构中存在离子注入或者形成PN结的区域应该划分更加细致的网格。

c. 为了定义网格,选择Mesh Define菜单项,如图4.3所示。下面将以在0.6μm×0.8μm的方形区域内创建非均匀网格为例介绍网格定义的方法。

图4.3  调用ATHENA网格定义菜单

2  在0.6μm×0.8μm的方形区域内创建非均匀网格

a. 在网格定义菜单中,Direction(方向)栏缺省为X;点击Location(位置)栏并输入值0;点击Spacing(间隔)栏并输入值0.1;

b. 在Comment(注释)栏,键入“Non-Uniform Grid(0.6um x 0.8um)”,如图4.4所示;

c. 点击insert键,参数将会出现在滚动条菜单中;

  

图4.4  定义网格参数图 4.5  点击Insert键后

d. 继续插入X方向的网格线,将第二和第三条X方向的网格线分别设为0.2和0.6,间距均为0.01。这样在X方向的右侧区域内就定义了一个非常精密的网格,用作为NMOS晶体管的有源区;

e. 接下来,我们继续在Y轴上建立网格。在Direction栏中选择Y;点击Location栏并输入值0。然后,点击Spacing栏并输入值0.008;

f. 在网格定义窗口中点击insert键,将第二、第三和第四条Y网格线设为0.2、0.5和0.8,间距分别为0.01,0.05和0.15,如图4.6所示。

图4.6  Y方向上的网格定义

g. 为了预览所定义的网格,在网格定义菜单中选择View键,则会显示View Grid窗口。

h. 最后,点击菜单上的WRITE键从而在文本窗口中写入网格定义的信息。如图4.7。

图4.7  对产生非均匀网格的行说明

4.1.3定义初始衬底参数

由网格定义菜单确定的LINE语句只是为ATHENA仿真结构建立了一个直角网格系的基础。接下来需要对衬底区进行初始化。对仿真结构进行初始化的步骤如下:

a.在ATHENA Commands菜单中选择Mesh Initialize…选项。ATHENA网格初始化菜单将会弹出。在缺省状态下,<100>晶向的硅被选作材料;

b.点击Boron杂质板上的Boron键,这样硼就成为了背景杂质;

c.对于Concentration栏,通过滚动条或直接输入选择理想浓度值为1.0,而在Exp栏中选择指数的值为14。这就确定了背景浓度为1.0×1014原子数/cm3;(也可以通过以Ohm·cm为单位的电阻系数来确定背景浓度。)

d.对于Dimensionality一栏,选择2D。即表示在二维情况下进行仿真;

e.对于Comment栏,输入“Initial Silicon Structure with <100> Orientation”,如图4.8;

f.点击WRITE键以写入网格初始化的有关信息。

图4.8  通过网格初始化菜单定义初始的衬底参数

4.1.4运行ATHENA并且绘图

现在,我们可以运行ATHENA以获得初始的结构。点击DECKBUILD控制栏里的run键。输出将会出现在仿真器子窗口中。语句struct outfile=.history01.str是DECKBUILD通过历史记录功能自动产生的,便于调试新文件等。

使初始结构可视化的步骤如下:

a.选中文件“.history01.str”。点击Tools菜单项,并依次选择Plot和Plot Structure…,如图4.9所示;在一个短暂的延迟之后,将会出现TONYPLOT。它仅有尺寸和材料方面的信息。在TONYPLOT中,依次选择Plot和Display…;

b.出现Display(二维网格)菜单项,如图4.10所示。在缺省状态下,Edges和Regions图象已选。把Mesh图象也选上,并点击Apply。将出现初始的三角型网格,如图4.11所示。

现在,之前的INIT语句创建了一个0.6μm×0.8μm大小的、杂质硼浓度为1.0×1014原子数/cm3、掺杂均匀的<100>晶向的硅片。这个仿真结构已经可以进行任何工艺处理步骤了(例如离子注入,扩散,刻蚀等)。

图4.9  绘制历史文件结构

图4.10  Tonyplot:Display(二维网格)菜单

图4.11  初始三角网格

4.1.5栅极氧化

接下来,我们通过干氧氧化在硅表面生成栅极氧化层,条件是1个大气压,950°C,3%HCL,11分钟。为了完成这个任务,可以在ATHENA的Commands菜单中依次选择Process和Diffuse…,ATHENA Diffuse菜单将会出现。

a.在Diffuse菜单中,将Time(minutes)从30改成11,Tempreture(C)从1000改成950。Constant温度默认选中(见图4.12);

图4.12  由扩散菜单定义的栅极氧化参数

图4.13  栅极氧化结构

b.在Ambient栏中,选择Dry O2项;分别检查Gas pressure和HCL栏。将HCL改成3%;在Comment栏里输入“Gate Oxidation”并点击WRITE键;

c.有关栅极氧化的数据信息将会被写入DECKBUILD文本窗口,其中Diffuse语句被用来实现栅极氧化;

d.点击DECKBUILD控制栏上的Cont键继续ATHENA仿真。一旦栅极氧化完成,另一个历史文件“.history02.str”将会生成;选中文件“.history02.str”,然后点击Tools菜单项,并依次选择Plot和Plot Structure…,将结构绘制出来;最终的栅极氧化结构将出现在TONYPLOT中,如图4.13所示。从图中可以看出,一个氧化层淀积在了硅表面上。

4.1.6提取栅极氧化层的厚度

下面过DECKBUILD中的Extract程序来确定在氧化处理过程中生成的氧化层的厚度。

a.在Commands菜单点击Extract…,出现ATHENA Extract菜单;Extract栏默认为Material thickness;在Name一栏输入“Gateoxide”;对于Material一栏,点击Material…,并选择SiO~2;在Extract location这一栏,点击X,并输入值0.3;

b.点击WRITE键,Extract语句将会出现在文本窗口中;

在这个Extract语句中,mat.occno=1为说明层数的参数。由于这里只有一个二氧化硅层,所以这个参数是可选的。然而当存在有多个二氧化硅层时,则必须指定出所定义的层;

c.点击DECKBUILD控制栏上的Cont键,继续进行ATHENA仿真仿真。Extract语句运行时的输出如图4.14所示;

从运行输出可以看到,我们测量的栅极氧化厚度为131.347Å。

图4.14  Extract语句运行时的输出

4.1.7栅氧厚度的最优化

下面介绍如何使用DECKBUILD中的最优化函数来对栅极氧化厚度进行最优化。假定所测量的栅氧厚度为100Å,栅极氧化过程中的扩散温度和偏压均需要进行调整。为了对参数进行最优化,DECKBUILD最优化函数应按如下方法使用:

a.依次点击Main control和Optimizer…选项;调用出如图4.15所示的最优化工具。第一个最优化视窗显示了Setup模式下控制参数的表格。我们只改变最大误差参数以便能精确地调整栅极氧化厚度为100Å;

b.将Maximum Error在criteria一栏中的值从5改为1;

c.接下来,我们通过Mode键将Setup模式改为Parameter模式,并定义需要优化参数(图4.16)。

图4.15  DECKBUILD最优化的Setup模式

图4.16  Parameter模式

需要优化的参数是栅极氧化过程中的温度和偏压。为了在最优化工具中对其进行最优化,如图4.17所示,在DECKBUILD窗口中选中栅极氧化这一步骤;

图4.17  选择栅极氧化步骤

d.然后,在Optimizer中,依次点击Edit和Add菜单项。一个名为Deckbuild:Parameter Define的窗口将会弹出,如图4.18所示,列出了所有可能作为参数的项;

图4.18  定义需要优化的参数

e.选中temp=和press=这两项。然后,点击Apply。添加的最优化参数将如图4.19所示一样列出;

图4.19  增加的最优化参数

f.接下来,通过Mode键将Parameter模式改为Targets模式,并定义优化目标;

g.Optimizer利用DECKBUILD中Extract语句的值来定义优化目标。因此,返回DECKBUILD的文本窗口并选中Extract栅极氧化厚度语句,如图4.20所示;

图4.20  选中优化目标

h.然后,在Optimizer中,依次点击Edit和Add项。这就将“栅极氧化”这个目标添加到了Optimizer的目标列表中去。在目标列表里定义目标值。在Target value中输入值100 Å(见图4.21);

通过在栅极氧化工艺过程中改变温度和偏压,Optimizer对栅极氧化厚度进行了优化。

i.为了观察优化过程,我们可以将Targets模式改为Graphics模式,如图4.22所示;

图4.21  在Target value中输入值100 Å

图4.22  Optimizer中的Graphics模式

j.最后,点击Optimize键以演示最优化过程。仿真将会重新运行,并且在一小段时间之后,重新开始栅极氧化这一步骤。优化后的结果为,温度925.727C,偏压0.982979,以及抽样氧化厚度100.209 Å,如图4.23所示;

为了完成最优化,温度和偏压的最优化值需要被复制回输入文档中。

k.为了复制这些值,需要返回Parameters模式并依次点击Edit和Copy to Deck菜单项以更新输入文档中的最优化值,输入文档将会在正确的地方自动更新。如图4.24所示;

图4.23  最优化完成

图4.24  优化后的参数在正确的地方自动更新

4.1.8完成离子注入

离子注入是向半导体器件结构中掺杂的主要方法。在ATHENA中,离子注入是通过可在ATHENA Implant菜单中设定的Implant语句来完成的。这里要演示阈值电压校正注入,条件是杂质硼的浓度为9.5×1011cm-2,注入能量为10keV,tilt为7度,rotation为30度,步骤如下:

g.在Commands菜单中,依次选择Process和Implant…,出现ATHENA Implant菜单;

h.在Impurity一栏中选择Boron;通过滚动条或者直接输入的方法,分别在Dose和Exp:这两栏中输入值9.5和11;在Energy、Tilt以及Rotation这三栏中分别输入值10、7和30;默认为Dual Pearson模式;将Material Type选为Crystalline;在Comment栏中,输入Threshold Voltage Adjust implant;

i.点击WRITE键,注入语句将会出现在文本窗口中,如图4.25所示;

图4.25  阈值电压调整注入语句

参数CRYSTAL说明了对于任何解析模型来说,均使用一片硅单晶上的值域抽样统计值。

j.点击DECKBUILD控制栏上的Cont键,ATHENA继续进行仿真,如图4.26所示;

图4.26  阈值电压调整注入步骤的仿真

4.1.9在TONYPLOT中分析硼掺杂特性

硼杂质的剖面形状可以通过2D Mesh菜单或TONYPLOT的Cutline工具进行成像。在2D Mesh菜单中,可以显现硼杂质的剖面轮廓线。另一方面,在二维结构中运行Cutline工具可以创建一维的硼杂质的横截面图。

首先,我们用图示的方法说明如何利用2D Mesh菜单去获得硼杂质剖面的轮廓线。

a.绘制历史文件“.history05.str”(阈值电压校正注入这一步骤后得到的历史文件),具体方法是,首先选中它,然后从DECKBUILD的Tools菜单依次选择Plot和Plot Structure;

b.在TONYPLOT中,依次选择Plot和Display…项,窗口Display(2D Mesh)将会弹出;

c.选择Contours图象画出结构的等浓度线;点击Define菜单并选择Contours…,如图4.27所示;

图4.27  调用TONYPLOT:Contour菜单

d.TONYPLOT:Contour弹出窗口将会出现。在缺省状态下,窗口中Quantity选项为Net doping,现在将Net doping改为Boron;点击Apply键,运行结束以后再点击Dismiss;

e.硼杂质的剖面浓度轮廓图如图4.28所示;

图4.28  离子注入后硼杂质的剖面轮廓图

接下来,我们要从硼杂质剖面二维的结构中得到一维的横截面图。具体步骤如下:

e.在TONYPLOT中,依次选择Tools和Cutline…项,弹出Cutline窗口;

f.在缺省状态下,Vertical图标已被选中,这将把图例在垂直方向;

g.在结构图中,从氧化层开始按下鼠标左键并一直拖动到结构底部。这样,一个一维的硼杂质剖面横截面图,如图4.29所示。

图4.29  演示结构的垂直方向截面图下载本文

显示全文
专题