视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
全等三角形与角平分线经典题型
2025-09-25 17:42:22 责编:小OO
文档
全等三角形与角平分线

一、知识概述

1、角的平分线的作法

  (1)在∠AOB的两边OA、OB上分别截取OD、OE,使OD=OE.

  (2)分别以D、E为圆心,以大于1/2DE长为半径画弧,两弧交于∠AOB内一点C.

  (3)作射线OC,则OC为∠AOB的平分线(如图)

指出:(1)作角的平分线的依据是三角形全等的条件——“SSS”.

   (2)角的平分线是一条射线,不能简单地叙述为连接.

2、角平分线的性质

  在角的平分线上的点到角的两边的距离相等.

指出:(1)这里的距离是指点到角两边垂线段的长.

   (2)该结论的证明是通过三角形全等得到的,它可以作为证明两条线段相等的依据.即不需再用老方法——全等三角形.

   (3)使用该结论的前提条件是有角的平分线,关键是图中有“垂直”.

3、角平分线的判定

  到角的两边的距离相等的点在角的平分线上.

指出:(1)此结论是角平分线的判定,它与角平分线的性质是互逆的.

   (2)此结论的条件是指在角的内部有点满足到角的两边的距离相等,那么过角的顶点和该点的射线必平分这个角.

4、三角形的角平分线的性质

  三角形的三条角平分线相交于一点,且这点到三角形三边的距离相等.

指出:(1)该结论的证明揭示了证明三线共点的证明思路:先设其中的两线交于一点,再证明该交点在第三线上.

   (2)该结论多应用于几何作图,特别是涉及到实际问题的作图题.

2、典型例题剖析

例1、如图所示,四边形ABCD中,AB=AD,AC平分∠BCD,AE⊥BC,AF⊥CD.求证:△ABE≌△ADF.

例2、如图所示,BE、CF是△ABC的高,BE、CF相交于O,且OA平分∠BAC.求证:OB=OC.

例3、如图,D为BC的中点,DE⊥DF,E、F分别在AB、AC边上,则BE+CF( )

 A.大于EF                B.小于EF

 C.等于EF                D.与EF的大小无法比较

例4、(12分)如图四边形ABCD中,AC平分∠BAD,CE⊥AB于E,∠D+∠B=180°,求证:AD+AB=2AE.

例5、已知:如图,在四边形ABCD中,AB>BC,BD平分.求证:AD=CD.

例6、如图,已知在△ABC中,∠B=60°,△ABC的角平分线AD、CE相交于O点,求证:AE+CD=AC.

3、中考解析

1、在△ABC,∠C=90°,BC=16cm,∠A的平分线AD交BC于D,且CD︰DB=3︰5,则D到AB的距离等于( )

 A.6cm                 B.7cm

 C.8cm                 D.9cm

2、如图,D是△ABC的一个外角的平分线上一点,求证:AB+AC3、如图,在△ABC中,D为BC的中点,DE⊥BC,交∠BAC的平分线AE于E,EF⊥AB于F,EG⊥AC交AC的延长线于G,求证:BF=CG.

4、已知:如图,△ABC中,∠ABC=45°,CD⊥AB于D,BE平分∠ABC,且BE⊥AC于E,与CD相交于点F.H是BC边的中点,连结DH与BE相交于点G.

(1)求证:BF=AC;

(2)求证:CE=BF;

(3)CE与BG的大小关系如何?试证明你的结论.

5、如图,已知∠1=∠2,P为BN上一点,且PD⊥BC于D,AB+BC=2BD,求证:∠BAP+∠BCP=180°

                              

6、如图,△ABC中,AM是BC边上的中线,求证:

7、已知:如图,在Rt△ABC中,AB=AC,∠BAC=90°,∠1=∠2,CE⊥BD的延长线于E.

 求证:BD=2CE.下载本文

显示全文
专题