一 、根据下表所列资料,运用劳动生产率 、土地生产率、 单位产品成本等农业技术经济学指标,分析其技术经济效果,并指出哪种品种技术经济效果最好。(要求在同类的两个品种之间比较)
作物种类 | 黄瓜 | 水稻 | 花生 | ||||
品种 | 宁青 | 二青 | 珍珠 | 广场13号 | 狮选 | 狮头企 | |
指标 | 每亩产量(斤) | 2460 | 2680 | 601.3 | 451.2 | 254 | 186.7 |
每亩产值(元) | 174.17 | 137.5 | 59.9 | 41.29 | 61.47 | 43.78 | |
每亩成本(元) | 115.25 | 108.36 | 25.51 | 24.91 | 35.69 | 36.52 | |
每亩物质费用 | 88.37 | 76.8 | 14.41 | 14.41 | 20.99 | 20.31 | |
每亩直接用工 | 44.8 | 44.2 | 8.5 | 17.5 | 24.5 | 27 |
指标
方案 | 甲 | 乙 | 丙 |
亩产值(元) | 250 | 225 | 185 |
每亩用工量(工日) | 48 | 59 | 56 |
每百元产值生产费用(元) | 46 | 34 | 28 |
生态平衡影响程度(级) | 5 | 2 | 2 |
方案
指标 | 年利润额 | 产品质量 | 污染情况 | 投资额 |
第一方案 | 95 | 保持平均水平 | 有所污染 | 62 |
第二方案 | 100 | 有所提高 | 有所控制 | 70 |
第三方案 | 115 | 有明显提高 | 保持一般水平 | 75 |
1、情况和数据资料:某农业现代化试点农场,引进先进的农业机械设备生产发生了显著的变化,具体的数据资料如下:
时 间 | 1987(年) | 19(年) | |
项 目 | 耕地面积(亩) | 12960 | 25000 |
粮豆亩产(公斤) | 253 | 351 | |
劳动力(个) | 242 | 20 |
B:计算并分析耕地面积扩大,单产提高,劳动节约三个因素在提高劳动生产率中的比重?
C:最后作一 综合评价。
五、某农场一队要在甲、乙、丙三类地上播种白菜、谷子、和玉米三种作物。已知每类地的面积以及每种作物的单产如下表。合同规定该队必须完成6000元的白菜产值任务,又要使粮产量达到最高的布局方案。
耕地
作物 | 白菜(元) | 谷子(公斤) | 玉米(公斤) | 亩数 |
甲等地 | 120 | 450 | 460 | 20 |
乙等地 | 100 | 400 | 450 | 48 |
丙等地 | 90 | 360 | 350 | 56 |
机床
零件 | 零件甲 | 零件乙 |
铣床(3台) | 10 | 20 |
六角机床(3台) | 20 | 30 |
自动机床(1台) | 30 | 80 |
部件
工厂 | 甲 | 乙 | 丙 | 丁 |
A | 110 | 110 | 70 | 80 |
B | 100 | 140 | 80 | 100 |
C | 150 | 240 | 150 | 180 |
施氮单位 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 |
亩产量(斤) | 0 | 8 | 23 | 44 | 70 | 93 | 107 | 115 | 119 | 113 | 103 |
1、当X=20,40,60时的生产弹性,平均产量和边际产量。
2、当Px=1元,Py=4元;Px=1元,Py=10元时,使纯收入最大的投入水平各是多少?
十、生产函数为Y=4X2-0.2X3。求:
1、精确边际产量方程和平均产量方程。
2、X为何值时,边际产量、平均产量和总产量达到最高?
3、这一函数第一 阶段的起点和终点,X各在什么水平?
十一、生产函数Y=0.5Xb,证明b是生产弹性;这个函数有无转折点?
十二、生产函数的一 般表达式为Y=F(X),用微分法求证当平均产量最大时,MPP=APP。
十三、有一群进行育肥实验的生猪,每增长25公斤活重所需饲料如下表所示:
生猪活重(斤) | 每增25斤所需 精料量 | 每增一斤所需精料量 | 每斤活重费用 |
20--44.99 | 76 | ||
45--69.99 | 86 | ||
70--95.99 | 93 | ||
95--119.99 | 110 | ||
120--144.99 | 115 |
2、假定生猪每斤收购价格为2.1元,饲料每斤价格为0.2元,试计算生猪饲养到哪一 体重组可以取得较大的经济效益。
十四、某单位将330只当年羊羔分成11组,每组30只,用不同的补饲料量同时育肥一 个月。平均每头一 个月补混合饲料量和平均每头一月增重情况见下表,每斤混合饲料价格为0.09元,每斤活重价格1.1元。试用边际分析法计算哪一 组的经济效果最好?
组别 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 |
平均每头补混合饲料(斤) | 50 | 60 | 70 | 80 | 90 | 100 | 110 | 120 | 130 | 140 | 150 |
平均每头增重(斤) | 3.8 | 5.0 | 6.37 | 7.2 | 8.0 | 8.7 | 9.3 | 9.8 | 10.2 | 10.5 | 10.7 |
1、ΔX1 /ΔX2〈 Px2 / Px1 ; 2、ΔY1 /ΔX1 〉Px1 / Py1 ;
3、ΔY1 /ΔY2〈 Py2 / Py1 ; 4、ΔX1 /ΔX2 〉Px1 / Px2 ;
5、ΔY1 /ΔX2 〉ΔY2 /ΔX2 。
十六、某饲料厂生产猪饲料,可以用玉米或麦麸作原料,根据玉米、麦麸中营养成分的测定,为保证生猪生长需要对营养物质的要求,生产100公斤饲料需要玉米60公斤,或麦麸80公斤,或玉米和麦麸的不同配合(见下表)均可达到目的。已知玉米的价格为0.42元/公斤;麦麸价格0.28元/公斤。求玉米和麦麸的哪一 种配合可以使生产100公斤饲料成本最低?
配合方式 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
玉米(公斤) | 60 | 50 | 40 | 30 | 20 | 10 | 0 |
麦麸(公斤) | 0 | 14 | 25 | 33 | 44 | 60 | 80 |
十八、某工程同时用钢材、木材两种建筑材料。由于木材紧张,需用钢材代替。钢材每吨价格为3000元,木材每立方米价格为750元。两种材料相互代替的配合比例如表,试求钢材代替木材的最低组合费用。
配合方式 | 钢材(吨)X1 | 木材(立方米)X2 |
1 | 0 | 20 |
2 | 1 | 16 |
3 | 2 | 13 |
4 | 3 | 11 |
5 | 4 | 10 |
二十、设某作物生产的二元回归方程为
Y=250+25X1 +15X2 +0.5X1 * X2-0.5X12 -2 X22
又设产品的单价Py=0.20元/斤,两种资源的价格分别为Px1=0.80元/斤,Px2=0.60元/斤,固定成本费用F=30元/亩。试求
1、获得最大纯收益时,两种生产资源的最佳投入量。
2、假定可变生产费用在15元/亩的水平下,试求在这种条件下,纯收益最大时的两种生产资源最佳投入量。
二十一、在一定投入集下A和B两种产品的生产有以下组合, 问当Pa=6元, Pb=2元时哪一种A和B产品组合有最大收益?
A | 53 | 52 | 50 | 46 | 40 | 32 | 22 | 0 |
B | 0 | 17 | 23 | 28 | 32 | 35 | 37 | 38 |
投资(万元) | (园艺场)ΔY1 Py1 | (轧花厂)ΔY2 Py2 | (轮窑厂) ΔY3 Py3 |
1 | 1.2 | 1.5 | 2.0 |
2 | 1.2 | 1.3 | 1.8 |
3 | 1.1 | 1.1 | 1.6 |
4 | 1.0 | 0.9 | 1.2 |
5 | 1.0 | 0.7 | 0.8 |
6 | 1.0 | 0.6 | 0.7 |
7 | 0.9 | 0.4 | 0.6 |
8 | 0.8 | 0.3 | 0.5 |
1、求出平均变动成本函数。
2、当AVC最低时,Y在什么水平?
3、求出边际成本函数。
4、证明平均变动成本最小时,AVC=MC。
5、作出平均变动成本函数和边际函数曲线。
二十四、已知生产函数为Y=2X2-12X,推导出平均产量函数和边际产量函数,总成本函数,平均成本函数和边际成本函数。
二十五、只有一 种资源X用于生产Y产品,随增加,总产量以递减的速度增加,达到一 个最高值后即下降。试用曲线图表示总产量曲线,边际产量曲线和平均产量曲线以及它们各自的成本曲线的关系。
二十六、平均成本函数ATC=100/Y-3Y+4Y2,计算:
1·固定成本;
2·当Y=2时的平均变动成本,总成本和边际成本;
3·平均变动成本最小时,Y为何值?
二十七、计算下表空白栏中的相应指标:
X | TFC | TPP | APP | MPP | TVC | AVC | MC | AFC | ATC |
0 | 40 | 0 | 0 | ||||||
1 | 40 | 4 | 5 | ||||||
2 | 40 | 10 | 10 | ||||||
3 | 40 | 15 | 15 | ||||||
4 | 40 | 18 | 20 | ||||||
5 | 40 | 20 | 25 |
二十八、在固定成本存在的情况下,平均总成本最低处的产量比平均变动
二十九、说明当所有其他成本相同时,在ATC最低处的产出水平将决定于TFC的大小。在ATC最低时的产出水平,是否会因的增减而增减?
三十、总变动成本函数TVC=120Y-Y2+0.02Y3
1、使平均单位产品的变动成本最小,Y在什么水平?
2、在上述产量水平时,MC和TVC的关系是什么?
3、当Py=108元时,最大纯收入是这个产量水平吗?
三十一、有品种的仔猪,三月后其增重与饲养日的函数关系为:Y1=9.46+ 27.09lnX (时间以月为单位),其饲养费用与饲养日的函数关系为Y2 =13.2X -2.81。设Y1 为猪的增重;Y2 为猪的饲养费用;X为饲养时间;生猪价格为1.36元/斤,试计算获得最大利润,最适饲养期。
三十二、种植双季稻对粮食增产有极大作用,但其比例越大,用工、用肥和其它生产费用越多,同时季节扩张,地力衰退,将会影响农业生产的投入产出效果。
年份 | 双季稻占用稻田面积(%) | 每100元农业产值生产费用 |
80 | 42 | 35.76 |
81 | 65 | 37.62 |
82 | 72 | 39.46 |
83 | 70 | 38.96 |
84 | 71 | 37.63 |
85 | 76 | 42.60 |
86 | 86 | 42.36 |
87 | 84 | 50.70 |
88 | 81 | 43.90 |
75 | 43.07 |
(Y=a+bX,a=26.67,b=0.19,r=0.8107)
注:1、资料中应剔除1982、1987年两年的资料(因灾)。
2、生产费用中包括人工费用。
3、农业产值、生产费用均只包括种植业,不包括林业、牧业、渔业。
三十三、某县1980—1990年农业机械化与多种经营的发展情况如表所示,试根据资料建立回归模型,并分析。(Y=aXb a=106.70,b=0.70,r=0.9379)
年份 | 农机总动力(千马力) | 多种经营总收入(万元) |
80 | 1181.4 | |
81 | 34.027 | 1465.4 |
82 | 38.749 | 1495.6 |
83 | 43.483 | 1331.4 |
84 | 57.183 | 1582.7 |
85 | 80.313 | 1661.3 |
86 | 90.725 | 2465.0 |
87 | 100.690 | 2996.0 |
88 | 108.547 | 2847.5 |
121.428 | 3324.2 | |
90 | 140.198 | 3851.6 |
三十四、一组化肥施用量与水稻产量的数据如下:
序号 | 化肥施用量(X) | 水稻产量(Y) |
1 | 15 | 330 |
2 | 20 | 345 |
3 | 25 | 365 |
4 | 30 | 405 |
5 | 35 | 445 |
6 | 40 | 495 |
7 | 45 | 455 |
三十五、某专业户承包了9亩耕地,积肥20吨,种植甲作物每亩需肥2吨,年利润250元,种植乙作物每亩需肥3吨,年利润300元,问该农户应如何安排生产,才能使利润最大?
要求:1、建立数学模型。
2、将原规划问题改写为对偶规划问题,并建立对偶模型。
三十六、某乡办厂有加工和装配两个车间,班生产能力分别为60小时和4小时,拟定生产A、B两种产品,生产工时定额和单件产值表:
工时定额 | 班生产能力(小时) | ||
加工车间 | 1 | 3 | 60 |
装配车间 | 1 | 1 | 40 |
单件产值(元/件) | 15 | 25 |
P1:每班产值达到750元;P2:充分利用两个车间的工时;P3:尽量减少加班工时。
要求据此拟定满足三项目标的生产计划。
三十七、某饲料公司配置生猪饲料,每袋由两种不同的饲料A和B组成。每公斤饲料A和B所含的营养成分及价格见表:
要求每袋饲料至少含消化能52,000大卡、粗蛋白质2,260克、矿物质磷克,才能保证生猪生长发育对营养物质的需要,求在保证满足上述需要的前提下,每袋饲料中要多少公斤A和B才能使总成本最低。
三十八、某肥料公司生产A、B、C三钟类型肥料都要使用氮、磷、钾 三种原料,各种肥料每吨需要用原料及某期间可供应的数量,每吨肥料净收益如表所示:
原料 | 原料需要量(吨) | 可供应数量 (吨) | ||
A | B | C | ||
氮 | 0.05 | 0.05 | 0.10 | 1000 |
磷 | 0.10 | 0.10 | 0.10 | 1800 |
钾 | 0.05 | 0.10 | 0.10 | 1200 |
净收益(吨) | 40.00 | 92.50 | 15.00 |
该公司因兑现合同决定该期A品种至少需生产6000吨,根据以上资料建立线性规划模型。并求最大净收益的生产组合。
三十九、某乡镇羽绒服装厂全年销售收入,总成本,投资额,投资利润等资料如下:
说明:1、基本方案总成本包括7280元变动成本和2500元固定成本;
2、税金按(销售收入-总成本)*50%计算。
假设:1、投资增加10%,产值减少10%。
2、销售收入增加或减少10%。
3、变动成本增加10%。
分别计算投资利润率变化了多少?
项目 | 基本方案 |
销售收入(元) | 12500 |
总成本(元) | 9780 |
其中:折旧(元) | 780 |
税金(元) | 1360 |
净利(元) | 1360 |
投资额(元) | 10300 |
投资利润率(%) | 13.2 |
四十、1、试对资金时间价值作出解释。
2、反映资金时间价值的形式有哪两种?
四十一、1996年12月到期面额为1000元的票据,与1996年8月31日以月利率0.12%向银行贴现。问可得现款多少?
四十二、期初存入银行100元,试按名义利率12%求7年后的本利和。
1、每年复利一次,2、每半年复利一次,
3、每季复利一次,4、每月复利一次。
并求各种复利下的实际利率各为多少?
四十三、期初存入银行1000元,每年复利一次计息,8年后本利和为2476元,求年利率。
四十四、期初存入银行1000元,以年利率12%复利计息,几年后可得本利和17000元。
四十五、每天节约香烟款2元,全年节约730元,与年末存入银行,以年利率10%复利计息,问40年后可得本利和多少?
四十六、某水利工程投资为100万元,投产后可获得投资收益率为12%,试问5年后能收回全部投资吗?
四十七、某基建工程投资为200万元,其投资收益率为15%,投产后每年用利润回收投资,要求7年收回全部投资。问每年的利润至少应为多少?
四十八、某企业通过可行性研究,预计实施某项投资后,10年内每年末可得利润20万元,若利率为10%,问该企业10年末能得到的利润共为多少?
四十九、某人存入银行一笔钱,以年利率8%复利计息,到10年后可得本利和8000元。问他存入银行的钱有多少?
五十、某渔业工程从银行贷款,国家要求建成的总投资额不能超过预算投资额100万元,四年建成,计划第一年投资10万元,第二年投资30万元,第三年投资40万元,第四年投资20万元,贷款利息为10%,那么实际用于工程的总投资额是多少?
五十一、某水利工程预期延续2年,为拖运材料而提出的方案之一是使用运送机械,该机械的价值10000元,年运行费用7000元。分析人员估计在两年末的残值为4000元。方案之二是承包者以每月1500元的费用将材料运送作业转包出去,如果标准收益率为8%,试比较这两种方案的优劣。
五十二、某加工机械购价12472元,若不作大修或更换零件,其使用寿命为20不,另一种具有同样效率的机器可花10000元建成,但在第十年末需要更换价值4000元的主要路件(可以接受的最低收益率为15%),问选择哪一种机器合算?
五十三、投资建成一纺织厂,采用国产设备和国外设备均可达到技术上的要求,国产设备投资40万元,每年预计成本12万元,残值3万元,经济寿命10年;国外设备投资60万元,每年预计成本12万元,残值4万元,经济寿命12年。标准收益率为10%,问选用哪一种设备有利?
五十四、一项投资需250000元,经济寿命为20年,残值为75000元,每年末支出40000元带来100000元的收益;另一项投资需175000元,20年末残值为60000元,每年末支出50000元带来90000元的收益。要求达到的投资收益率为20%,问哪个方案更合理?
五十五、某机械厂在今后10年处理其废物需用30000元安装一套装置,其年运行费用5000元,在第十年处理能力必须增加一倍,因而再需安装一套同类型的装置,另一方案是现在以50000元安装一套能满足10年后废物处理能力增加一倍时所需要的大型装置,其年运行费用前10年为6000元,后10年为9500元,两种设施的经济寿命从安装使用之日算起为20年。(标准收益率为10%)问采用哪一种方案更合理?
五十六、1995年1月1日,某公司用一笔支付得到一 个租期为5年的工厂,按照租约规定,公司若延长租期,则需在每年年初支付6000元,公司预算将租期延长5年,即租用期到2004年底结束。1998年1月1日,公司决定用一笔投资基金立即将最后5年的租金一次预付完毕,如果年利息为5%,则该公司预付的租金是多少?
五十七、假如你打算在8年内累积6000元,用于家庭基本建设,银行年利率8%,那么你每年应存入等额现金多少?
五十八、在什么收益条件下,1000元在第五年末为原来的五倍?
五十九、如果投资1000元,可带来持续5 年末350元的收益,问投资收益率为多少?
六十、某乡镇企业公司可在10年内每年末支付23852元租用一台新机器,或立即付出100000元购置该机器,该机器的经济寿命为10年,残值为0,如果最低贴现率为20%,公司采用的两种方案是否有经济上的差别?
六十一、某人拟定在今后5年内节约一笔钱,以购置价值7000元的高级相机,如果利息率为4%,以季度计息,问他每年应储蓄多少?
六十二、引进外资(年息10%)综合治理中低产田15万亩;以开始投资的第一年为基准年,即零年;项目有效期为12年,即1—12年;计划基准年引进外资(投资额)为300万元,下一 年为150万元,投资后的第二年为50万元,共计500万元;预计效益为:开始投资后的第一年为平产,第二年平均每亩增收10元,第三年为平均每亩增收12元,以后每年收益递增率为10%,至12年为止。试求净现值和内部收益率,并根据计算结果作一简要评价。下载本文