视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
高数大一上学期期末试卷
2025-09-25 23:05:00 责编:小OO
文档
························装·······················订························密························封························线·························

系别:_____________  年级:____________ 专业:____________________   姓名:_______________    学号:________________    

························阅·······················卷························密························封························线·························

菏泽学院  2012级

2012-2013学年第1学期

(专科)各专业《高等数学》期末试卷(B)

(110分钟)
题  号总  分
得  分
阅卷人
                                                                 

得  分

阅卷人
一、判断题(每小题2分,共10分)

    (对的打“√”,  错的打“×”)

(    )1、数列单调减少且有下界,则数列必有极限;

(    )2、函数在某点处不可导,则曲线在相应点处没有切线;

(    )3、若在上连续,在内可导,则必存在,使;

(    )4、如果、分别是函数的极大值、极小值,则必有;

得  分

阅卷人
 (    )5、函数在处连续但不可导.

得  分

阅卷人
二、选择题(每小题3分,共15分)

(把答案填在题前括号内)

(    )1、当时,下列变量是无穷小量的是(  )                         

A.    B.   C.    D.

(    )2、(  )                                      

A.  1      B.       C.  0       D.   

(    )3、若=,则方程的实根的个数为( )

 A.1个     B. 2个      C.3个     D.4个

(   )4、设 则( )。                                                                               

A.      B.     C.     D.  。

 (    )5、设是的一个原函数,C为常数,则下列函数中仍是的原函数的是(  )        

A.  B.  C.   D.

得  分

阅卷人
三、填空题(每小题3分,共15分)

1、=              

2、设,则_______________。

3、曲线在点的切线方程为______________________。

4、曲线_____________________。

5、。

四、计算题(每小题7分,共42分)

1、求极限

2、求极限

3、设函数在内连续,求

4、设函数由方程确定,求

          

5、求不定积分

6、求不定积分

得  分

阅卷人
五、证明题(每小题9分,共18分)

························装·······················订························密························封························线·························

系别:_____________  年级:____________ 专业:____________________   姓名:_______________    学号:________________    

························阅·······················卷························密························封························线·························

1、证明:方程至少有一个根介于和之间.

2、证明: 下载本文

显示全文
专题