系别:_____________ 年级:____________ 专业:____________________ 姓名:_______________ 学号:________________
························阅·······················卷························密························封························线·························
菏泽学院 2012级
2012-2013学年第1学期
| (专科)各专业《高等数学》期末试卷(B) |
| (110分钟) |
| 题 号 | 一 | 二 | 三 | 四 | 五 | 总 分 |
| 得 分 | ||||||
| 阅卷人 |
| 得 分 | |
| 阅卷人 |
(对的打“√”, 错的打“×”)
( )1、数列单调减少且有下界,则数列必有极限;
( )2、函数在某点处不可导,则曲线在相应点处没有切线;
( )3、若在上连续,在内可导,则必存在,使;
( )4、如果、分别是函数的极大值、极小值,则必有;
| 得 分 | |
| 阅卷人 |
| 得 分 | |
| 阅卷人 |
(把答案填在题前括号内)
( )1、当时,下列变量是无穷小量的是( )
A. B. C. D.
( )2、( )
A. 1 B. C. 0 D.
( )3、若=,则方程的实根的个数为( )
A.1个 B. 2个 C.3个 D.4个
( )4、设 则( )。
A. B. C. D. 。
( )5、设是的一个原函数,C为常数,则下列函数中仍是的原函数的是( )
A. B. C. D.
| 得 分 | |
| 阅卷人 |
1、=
2、设,则_______________。
3、曲线在点的切线方程为______________________。
4、曲线_____________________。
5、。
四、计算题(每小题7分,共42分)
1、求极限
2、求极限
3、设函数在内连续,求
4、设函数由方程确定,求
5、求不定积分
6、求不定积分
| 得 分 | |
| 阅卷人 |
························装·······················订························密························封························线·························
系别:_____________ 年级:____________ 专业:____________________ 姓名:_______________ 学号:________________
························阅·······················卷························密························封························线·························
1、证明:方程至少有一个根介于和之间.
2、证明: 下载本文