视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
初一数学-第八章-二元一次方程组练习题(含答案)
2025-09-25 21:45:04 责编:小OO
文档
二元一次方程组练习题

    

一、选择题:

1.下列方程中,是二元一次方程的是(  )

    A.3x-2y=4z     B.6xy+9=0     C.+4y=6     D.4x=

2.下列方程组中,是二元一次方程组的是(  )

    A.

3.二元一次方程5a-11b=21  (  )

    A.有且只有一解    B.有无数解    C.无解         D.有且只有两解

4.方程y=1-x与3x+2y=5的公共解是(  )

    A.

5.若│x-2│+(3y+2)2=0,则的值是(  )

    A.-1        B.-2         C.-3        D.

6.方程组的解与x与y的值相等,则k等于(  )

7.下列各式,属于二元一次方程的个数有(  )

    ①xy+2x-y=7;  ②4x+1=x-y;    ③+y=5; ④x=y;    ⑤x2-y2=2

    ⑥6x-2y        ⑦x+y+z=1        ⑧y(y-1)=2y2-y2+x

    A.1      B.2      C.3       D.4

8.某年级学生共有246人,其中男生人数y比女生人数x的2倍少2人,则下面所列的方程组中符合题意的有(  )

    A.

二、填空题

9.已知方程2x+3y-4=0,用含x的代数式表示y为:y=_______;用含y的代数式表示x为:x=________.

10.在二元一次方程-x+3y=2中,当x=4时,y=_______;当y=-1时,x=______.

11.若x3m-3-2yn-1=5是二元一次方程,则m=_____,n=______.

12.已知是方程x-ky=1的解,那么k=_______.

13.已知│x-1│+(2y+1)2=0,且2x-ky=4,则k=_____.

14.二元一次方程x+y=5的正整数解有______________.

15.以为解的一个二元一次方程是_________.

16.已知的解,则m=_______,n=______.

三、解答题

17.当y=-3时,二元一次方程3x+5y=-3和3y-2ax=a+2(关于x,y的方程)有相同的解,求a的值.

18.如果(a-2)x+(b+1)y=13是关于x,y的二元一次方程,则a,b满足什么条件?

19.二元一次方程组的解x,y的值相等,求k.

20.已知x,y是有理数,且(│x│-1)2+(2y+1)2=0,则x-y的值是多少?

21.已知方程x+3y=5,请你写出一个二元一次方程,使它与已知方程所组成的方程组的解为.

22.根据题意列出方程组:

(1)明明到邮局买0.8元与2元的邮票共13枚,共花去20元钱,问明明两种邮票各买了多少枚?

(2)将若干只鸡放入若干笼中,若每个笼中放4只,则有一鸡无笼可放;若每个笼里放5只,则有一笼无鸡可放,问有多少只鸡,多少个笼?

23.方程组的解是否满足2x-y=8?满足2x-y=8的一对x,y的值是否是方程组的解?

24.(开放题)是否存在整数m,使关于x的方程2x+9=2-(m-2)x在整数范围内有解,你能找到几个m的值?你能求出相应的x的解吗?

答案:

一、选择题

1.D  解析:掌握判断二元一次方程的三个必需条件:①含有两个未知数;②含有未知数的项的次数是1;③等式两边都是整式.

2.A  解析:二元一次方程组的三个必需条件:①含有两个未知数,②每个含未知数的项次数为1;③每个方程都是整式方程.

3.B  解析:不加条件时,一个二元一次方程有无数个解.

4.C  解析:用排除法,逐个代入验证.

5.C  解析:利用非负数的性质. 6.B

7.C  解析:根据二元一次方程的定义来判定,含有两个未知数且未知数的次数不超过1次的整式方程叫二元一次方程,注意⑧整理后是二元一次方程. 8.B

二、填空题

9.  10.  -10

11.,2  解析:令3m-3=1,n-1=1,∴m=,n=2.

12.-1  解析:把代入方程x-ky=1中,得-2-3k=1,∴k=-1.

13.4  解析:由已知得x-1=0,2y+1=0,

∴x=1,y=-,把代入方程2x-ky=4中,2+k=4,∴k=1.

14.解:

解析:∵x+y=5,∴y=5-x,又∵x,y均为正整数,

∴x为小于5的正整数.当x=1时,y=4;当x=2时,y=3;

当x=3,y=2;当x=4时,y=1.

∴x+y=5的正整数解为

15.x+y=12  解析:以x与y的数量关系组建方程,如2x+y=17,2x-y=3等,

此题答案不唯一.

16.1  4  解析:将中进行求解.

三、解答题

17.解:∵y=-3时,3x+5y=-3,∴3x+5×(-3)=-3,∴x=4,

∵方程3x+5y=-3和3x-2ax=a+2有相同的解,

∴3×(-3)-2a×4=a+2,∴a=-.

18.解:∵(a-2)x+(b+1)y=13是关于x,y的二元一次方程,

∴a-2≠0,b+1≠0,∴a≠2,b≠-1  

解析:此题中,若要满足含有两个未知数,需使未知数的系数不为0.

(若系数为0,则该项就是0)

19.解:由题意可知x=y,∴4x+3y=7可化为4x+3x=7,

∴x=1,y=1.将x=1,y=1代入kx+(k-1)y=3中得k+k-1=3,

∴k=2  解析:由两个未知数的特殊关系,可将一个未知数用含另一个未知数的代数式代替,化“二元”为“一元”,从而求得两未知数的值.

20.解:由(│x│-1)2+(2y+1)2=0,可得│x│-1=0且2y+1=0,∴x=±1,y=-.

当x=1,y=-时,x-y=1+=;

当x=-1,y=-时,x-y=-1+=-.

解析:任何有理数的平方都是非负数,且题中两非负数之和为0,

则这两非负数(│x│-1)2与(2y+1)2都等于0,从而得到│x│-1=0,2y+1=0.

21.解:经验算是方程x+3y=5的解,再写一个方程,如x-y=3.

22.(1)解:设0.8元的邮票买了x枚,2元的邮票买了y枚,根据题意得.

    (2)解:设有x只鸡,y个笼,根据题意得.

23.解:满足,不一定.

解析:∵的解既是方程x+y=25的解,也满足2x-y=8,

∴方程组的解一定满足其中的任一个方程,但方程2x-y=8的解有无数组,

如x=10,y=12,不满足方程组.

24.解:存在,四组.∵原方程可变形为-mx=7,

∴当m=1时,x=-7;m=-1时,x=7;m=7时,x=-1;m=-7时x=1.下载本文

显示全文
专题