typedef struct
{ int lvl; //层次序列指针,总是指向当前“根结点”在层次序列中的位置
int l,h; //中序序列的下上界
int f; //层次序列中当前“根结点”的双亲结点的指针
int lr; // 1—双亲的左子树 2—双亲的右子树
}qnode;
BiTree Creat(datatype in[],level[],int n)
//由二叉树的层次序列level[n]和中序序列in[n]生成二叉树。 n是二叉树的结点数
{if (n<1) {printf(“参数错误\\n”); exit(0);}
qnode s,Q[]; //Q是元素为qnode类型的队列,容量足够大
init(Q); int R=0; //R是层次序列指针,指向当前待处理的结点
BiTree p=(BiTree)malloc(sizeof(BiNode)); //生成根结点
p->data=level[0]; p->lchild=null; p->rchild=null; //填写该结点数据
for (i=0; i if (i==0) //根结点无左子树,遍历序列的1—n-1是右子树 {p->lchild=null; s.lvl=++R; s.l=i+1; s.h=n-1; s.f=p; s.lr=2; enqueue(Q,s); } else if (i==n-1) //根结点无右子树,遍历序列的1—n-1是左子树 {p->rchild=null; s.lvl=++R; s.l=1; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s); } else //根结点有左子树和右子树 {s.lvl=++R; s.l=0; s.h=i-1; s.f=p; s.lr=1;enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1;s.h=n-1;s.f=p; s.lr=2;enqueue(Q,s);//右子树有关信息入队列 } while (!empty(Q)) //当队列不空,进行循环,构造二叉树的左右子树 { s=delqueue(Q); father=s.f; for (i=s.l; i<=s.h; i++) if (in[i]==level[s.lvl]) break; p=(bitreptr)malloc(sizeof(binode)); //申请结点空间 p->data=level[s.lvl]; p->lchild=null; p->rchild=null; //填写该结点数据 if (s.lr==1) father->lchild=p; else father->rchild=p; //让双亲的子女指针指向该结点 if (i==s.l) {p->lchild=null; //处理无左子女 s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); } else if (i==s.h) {p->rchild=null; //处理无右子女 s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s); } else{s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); //右子树有关信息入队列 } }//结束while (!empty(Q)) return(p); }//算法结束 2、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。 void Translation(float *matrix,int n) //本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。 {int i,j,k,l; float sum,min; //sum暂存各行元素之和 float *p, *pi, *pk; for(i=0; i for (j=0; j }//for i for(i=0; i for(j=i+1;j {pk=matrix+n*k; //pk指向第k行第1个元素. pi=matrix+n*i; //pi指向第i行第1个元素. for(j=0;j sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和. }//if }//for i free(p); //释放p数组. }// Translation [算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2). 3、编写一个过程,对一个n×n矩阵,通过行变换,使其每行元素的平均值按递增顺序排列。 4、假设K1,…,Kn是n个关键词,试解答: 试用二叉查找树的插入算法建立一棵二叉查找树,即当关键词的插入次序为K1,K2,…,Kn时,用算法建立一棵以LLINK / RLINK 链接表示的二叉查找树。 5、请编写一个判别给定二叉树是否为二叉排序树的算法,设二叉树用llink-rlink法存储。 6、 二叉树的层次遍历序列的第一个结点是二叉树的根。实际上,层次遍历序列中的每个结点都是“局部根”。确定根后,到二叉树的中序序列中,查到该结点,该结点将二叉树分为“左根右”三部分。若左、右子树均有,则层次序列根结点的后面应是左右子树的根;若中序序列中只有左子树或只有右子树,则在层次序列的根结点后也只有左子树的根或右子树的根。这样,定义一个全局变量指针R,指向层次序列待处理元素。算法中先处理根结点,将根结点和左右子女的信息入队列。然后,在队列不空的条件下,循环处理二叉树的结点。队列中元素的数据结构定义如下: typedef struct { int lvl; //层次序列指针,总是指向当前“根结点”在层次序列中的位置 int l,h; //中序序列的下上界 int f; //层次序列中当前“根结点”的双亲结点的指针 int lr; // 1—双亲的左子树 2—双亲的右子树 }qnode; BiTree Creat(datatype in[],level[],int n) //由二叉树的层次序列level[n]和中序序列in[n]生成二叉树。 n是二叉树的结点数 {if (n<1) {printf(“参数错误\\n”); exit(0);} qnode s,Q[]; //Q是元素为qnode类型的队列,容量足够大 init(Q); int R=0; //R是层次序列指针,指向当前待处理的结点 BiTree p=(BiTree)malloc(sizeof(BiNode)); //生成根结点 p->data=level[0]; p->lchild=null; p->rchild=null; //填写该结点数据 for (i=0; i if (i==0) //根结点无左子树,遍历序列的1—n-1是右子树 {p->lchild=null; s.lvl=++R; s.l=i+1; s.h=n-1; s.f=p; s.lr=2; enqueue(Q,s); } else if (i==n-1) //根结点无右子树,遍历序列的1—n-1是左子树 {p->rchild=null; s.lvl=++R; s.l=1; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s); } else //根结点有左子树和右子树 {s.lvl=++R; s.l=0; s.h=i-1; s.f=p; s.lr=1;enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1;s.h=n-1;s.f=p; s.lr=2;enqueue(Q,s);//右子树有关信息入队列 } while (!empty(Q)) //当队列不空,进行循环,构造二叉树的左右子树 { s=delqueue(Q); father=s.f; for (i=s.l; i<=s.h; i++) if (in[i]==level[s.lvl]) break; p=(bitreptr)malloc(sizeof(binode)); //申请结点空间 p->data=level[s.lvl]; p->lchild=null; p->rchild=null; //填写该结点数据 if (s.lr==1) father->lchild=p; else father->rchild=p; //让双亲的子女指针指向该结点 if (i==s.l) {p->lchild=null; //处理无左子女 s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); } else if (i==s.h) {p->rchild=null; //处理无右子女 s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s); } else{s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);//左子树有关信息入队列 s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); //右子树有关信息入队列 } }//结束while (!empty(Q)) return(p); }//算法结束 7、我们用l代表最长平台的长度,用k指示最长平台在数组b中的起始位置(下标)。用j记住局部平台的起始位置,用i指示扫描b数组的下标,i从0开始,依次和后续元素比较,若局部平台长度(i-j)大于l时,则修改最长平台的长度k(l=i-j)和其在b中的起始位置(k=j),直到b数组结束,l即为所求。 void Platform (int b[ ], int N) //求具有N个元素的整型数组b中最长平台的长度。 {l=1;k=0;j=0;i=0; while(i i++; j=i; } //新平台起点 printf(“最长平台长度%d,在b数组中起始下标为%d”,l,k); }// Platform 8、4、 void LinkList_reverse(Linklist &L) //链表的就地逆置;为简化算法,假设表长大于2 { p=L->next;q=p->next;s=q->next;p->next=NULL; while(s->next) { q->next=p;p=q; q=s;s=s->next; //把L的元素逐个插入新表表头 } q->next=p;s->next=q;L->next=s; }//LinkList_reverse 9、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。 29. ① 试找出满足下列条件的二叉树 1)先序序列与后序序列相同 2)中序序列与后序序列相同 3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同 下载本文