视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
新版化工原理习题答案(01)第一章_流体流动
2025-09-25 21:28:00 责编:小OO
文档
第一章 流体流动

流体的重要性质

1.某气柜的容积为6 000 m3,若气柜内的表压力为5.5 kPa,温度为40 ℃。已知各组分气体的体积分数为:H2 40%、 N2 20%、CO 32%、CO2 7%、CH4 1%,大气压力为 101.3 kPa,试计算气柜满载时各组分的质量。

解:气柜满载时各气体的总摩尔数

各组分的质量:

2.若将密度为830 kg/ m3的油与密度为710 kg/ m3的油各60 kg混在一起,试求混合油的密度。设混合油为理想溶液。

解: 

流体静力学

3.已知甲地区的平均大气压力为85.3 kPa,乙地区的平均大气压力为101.33 kPa,在甲地区的某真空设备上装有一个真空表,其读数为20 kPa。若改在乙地区操作,真空表的读数为多少才能维持该设备的的绝对压力与甲地区操作时相同?

    解:(1)设备内绝对压力

        绝压=大气压-真空度= 

   (2)真空表读数

        真空度=大气压-绝压=

    4.某储油罐中盛有密度为960 kg/m3的重油(如附图所示),油面最高时离罐底9.5 m,油面上方与大气相通。在罐侧壁的下部有一直径为760 mm的孔,其中心距罐底1000 mm,孔盖用14 mm的钢制螺钉紧固。若螺钉材料的工作压力为39.5×106 Pa,问至少需要几个螺钉(大气压力为101.3×103 Pa)?

    解:由流体静力学方程,距罐底1000 mm处的流体压力为

        

作用在孔盖上的总力为

        

每个螺钉所受力为

        

因此

     习题5附图

       

习题4附图

    

    

5.如本题附图所示,流化床反应器上装有两个U管压差计。读数分别为R1=500 mm,R2=80 mm,指示液为水银。为防止水银蒸气向空间扩散,于右侧的U管与大气连通的玻璃管内灌入一段水,其高度R3=100 mm。试求A、B两点的表压力。

习题6附图

    解:(1)A点的压力       

(2)B点的压力

       

6.如本题附图所示,水在管道内流动。为测量流体压力,在管道某截面处连接U管压差计,指示液为水银,读数R=100 mm,h=800 mm。为防止水银扩散至空气中,在水银面上方充入少量水,其高度可以忽略不计。已知当地大气压力为101.3 kPa,试求管路中心处流体的压力。

解:设管路中心处流体的压力为p

根据流体静力学基本方程式, 

则 

习题7附图

7.某工厂为了控制乙炔发生炉内的压力不超过13.3 kPa(表压),在炉外装一安全液封管(又称水封)装置,如本题附图所示。液封的作用是,当炉内压力超过规定值时,气体便从液封管排出。试求此炉的安全液封管应插入槽内水面下的深度h。

解: 

流体流动概述

8. 密度为1800 kg/m3的某液体经一内径为60 mm的管道输送到某处,若其平均流速为0.8 m/s,求该液体的体积流量(m3/h)、质量流量(kg/s)和质量通量[kg/(m2·s)]。

解: 

9.在实验室中,用内径为1.5 cm的玻璃管路输送20 ℃的70%醋酸。已知质量流量为10 kg/min。试分别用用SI和厘米克秒单位计算该流动的雷诺数,并指出流动型态。

    解:(1)用SI单位计算

查附录70%醋酸在20 ℃时, 

          

              故为湍流。

   (2)用物理单位计算

          

          , 

          

10.有一装满水的储槽,直径1.2 m,高3 m。现由槽底部的小孔向外排水。小孔的直径为4 cm,测得水流过小孔的平均流速u0与槽内水面高度z的关系为:

     

试求算(1)放出1 m3水所需的时间(设水的密度为1000 kg/m3);(2)又若槽中装满煤油,其它条件不变,放出1m3煤油所需时间有何变化(设煤油密度为800 kg/m3)?

    解:放出1m3水后液面高度降至z1,则

        

由质量守恒,得

        ,   (无水补充)

        

           (A为储槽截面积)

故有    

即      

上式积分得  

             

    11.如本题附图所示,高位槽内的水位高于地面7 m,水从φ108 mm×4 mm的管道中流出,管路出口高于地面1.5 m。已知水流经系统的能量损失可按∑hf=5.5u2计算,其中u为水在管内的平均流速(m/s)。设流动为稳态,试计算(1)A-A'截面处水的平均流速;(2)水的流量(m3/h)。

    解:(1)A- A'截面处水的平均流速

    在高位槽水面与管路出口截面之间列机械能衡算方程,得

                                               (1)

式中     z1=7 m,ub1~0,p1=0(表压)

         z2=1.5 m,p2=0(表压),ub2 =5.5 u2

代入式(1)得

         

         

(2)水的流量(以m3/h计)

           

        习题11附图                            习题12附图

12.20 ℃的水以2.5 m/s的平均流速流经φ38 mm×2.5 mm的水平管,此管以锥形管与另一φ53 mm×3 mm的水平管相连。如本题附图所示,在锥形管两侧A、B处各插入一垂直玻璃管以观察两截面的压力。若水流经A、B两截面间的能量损失为1.5 J/kg,求两玻璃管的水面差(以mm计),并在本题附图中画出两玻璃管中水面的相对位置。

    解:在A、B两截面之间列机械能衡算方程

       

式中   z1=z2=0, 

       ∑hf=1.5 J/kg

       

      

习题13附图                               

故    

13.如本题附图所示,用泵2将储罐1中的有机混合液送至精馏塔3的中部进行分离。已知储罐内液面维持恒定,其上方压力为1.0133105 Pa。流体密度为800 kg/m3。精馏塔进口处的塔内压力为1.21105 Pa,进料口高于储罐内的液面8 m,输送管道直径为φ68 mm 4 mm,进料量为20 m3/h。料液流经全部管道的能量损失为70 J/kg,求泵的有效功率。

解:在截面和截面之间列柏努利方程式,得

    

               

       习题14附图

14.本题附图所示的贮槽内径D=2 m,槽底与内径d0为32 mm的钢管相连,槽内无液体补充,其初始液面高度h1为2 m(以管子中心线为基准)。液体在管内流动时的全部能量损失可按∑hf=20 u2计算,式中的u为液体在管内的平均流速(m/s)。试求当槽内液面下降1 m时所需的时间。

    解:由质量衡算方程,得

                                                           (1)

                                                    (2)

                                                     (3)

将式(2),(3)代入式(1)得

        

即                                                      (4)

在贮槽液面与管出口截面之间列机械能衡算方程

        

即      

或写成  

                                                            (5)

式(4)与式(5)联立,得

        

即      

i.c.      θ=0,h=h1=2 m;θ=θ,h=1m    

积分得  

动量传递现象与管内流动阻力

15.某不可压缩流体在矩形截面的管道中作一维定态层流流动。设管道宽度为b,高度2y0,且b>>y0,流道长度为L,两端压力降为,试根据力的衡算导出(1)剪应力τ随高度y(自中心至任意一点的距离)变化的关系式;(2)通道截面上的速度分布方程;(3)平均流速与最大流速的关系。

    解:(1)由于b>>y0 ,可近似认为两板无限宽,故有 

                                               (1)

   (2)将牛顿黏性定律代入(1)得

              

        

上式积分得 

                                                             (2)

边界条件为  y=0,u=0,代入式(2)中,得  C=-

因此                                                       (3)

(3)当y=y0,u=umax

故有    

再将式(3)写成 

                                                           (4)

根据ub的定义,得

        

    16.不可压缩流体在水平圆管中作一维定态轴向层流流动,试证明(1)与主体流速u相应的速度点出现在离管壁0.293ri处,其中ri为管内半径;(2)剪应力沿径向为直线分布,且在管中心为零。

    解:(1)                                  (1)

当u=ub 时,由式(1)得

        

解得  

    由管壁面算起的距离为                      (2)

由对式(1)求导得  

        

故                                                     (3)

在管中心处,r=0,故τ=0。

17.流体在圆管内作定态湍流时的速度分布可用如下的经验式表达

试计算管内平均流速与最大流速之比u /umax。

解: 

    18.某液体以一定的质量流量在水平直圆管内作湍流流动。若管长及液体物性不变,将管径减至原来的1/2,问因流动阻力而产生的能量损失为原来的多少倍?

    解:流体在水平光滑直圆管中作湍流流动时

        =     

或      =/=

        =(

式中    =2 , =()2 =4

因此    ==32

又由于  

        =(=(=(2×=(0.5)0.25=0.841

故      =32×0.84=26.9 

                             

       习题19附图                                        

                                                      

    19.用泵将2×104 kg/h的溶液自反应器送至高位槽(见本题附图)。反应器液面上方保持25.9×103 Pa的真空度,高位槽液面上方为大气压。管道为76 mm×4 mm的钢管,总长为35 m,管线上有两个全开的闸阀、一个孔板流量计(局部阻力系数为4)、五个标准弯头。反应器内液面与管路出口的距离为17 m。若泵的效率为0.7,求泵的轴功率。(已知溶液的密度为1073 kg/m3,黏度为6.310-4 Pas。管壁绝对粗糙度可取为0.3 mm。)

    解:在反应器液面1-1,与管路出口内侧截面2-2,间列机械能衡算方程,以截面1-1,为基准水平面,得

                                       (1)

式中    z1=0,z2=17 m,ub1≈0

        

        p1=-25.9×103 Pa (表),p2=0 (表)  

将以上数据代入式(1),并整理得

        

           =9.81×17+++=192.0+

其中    =(++)

        ==1.656×105      

        

根据Re与e/d值,查得λ=0.03,并由教材可查得各管件、阀门的当量长度分别为

    闸阀(全开):  0.43×2 m =0.86 m

    标准弯头:      2.2×5 m =11 m

故      =(0.03×+0.5+4) =25.74J/kg

于是    

泵的轴功率为

        ===1.73kW

流体输送管路的计算

                     

       习题20附图

                                                      

    20.如本题附图所示,贮槽内水位维持不变。槽的底部与内径为100 mm的钢质放水管相连,管路上装有一个闸阀,距管路入口端15 m处安有以水银为指示液的U管压差计,其一臂与管道相连,另一臂通大气。压差计连接管内充满了水,测压点与管路出口端之间的直管长度为20 m。

   (1)当闸阀关闭时,测得R=600 mm、h=1500 mm;当闸阀部分开启时,测得R=400 mm、h=1400 mm。摩擦系数可取为0.025,管路入口处的局部阻力系数取为0.5。问每小时从管中流出多少水(m3)?

    (2)当闸阀全开时,U管压差计测压处的压力为多少Pa(表压)。(闸阀全开时Le/d≈15,摩擦系数仍可取0.025。)

    解:(1)闸阀部分开启时水的流量

    在贮槽水面1-1,与测压点处截面2-2,间列机械能衡算方程,并通过截面2-2,的中心作基准水平面,得

                                          (a)

式中    p1=0(表)   

        

        ub2=0,z2=0

    z1可通过闸阀全关时的数据求取。当闸阀全关时,水静止不动,根据流体静力学基本方程知

                                                      (b)

式中    h=1.5 m,   R=0.6 m

将已知数据代入式(b)得   

        

        

将以上各值代入式(a),即

        9.81×6.66=++2.13 ub2  

解得    

水的流量为  

   (2)闸阀全开时测压点处的压力

在截面1-1,与管路出口内侧截面3-3,间列机械能衡算方程,并通过管中心线作基准平面,得

                                          (c)

式中    z1=6.66 m,z3=0,ub1=0,p1=p3

        =

将以上数据代入式(c),即   

        9.81×6.66=+4.81 ub2

解得        

    再在截面1-1,与2-2,间列机械能衡算方程,基平面同前,得

                                          (d)

式中    z1=6.66 m,z2=0,ub10,ub2=3.51 m/s,p1=0(表压力)

        

将以上数值代入上式,则

            

解得    p2=3.30×104 Pa(表压)

21.10 ℃的水以500 l/min的流量流经一长为300 m的水平管,管壁的绝对粗糙度为0.05 mm。有6 m的压头可供克服流动的摩擦阻力,试求管径的最小尺寸。

    解:由于是直径均一的水平圆管,故机械能衡算方程简化为

        

上式两端同除以加速度g,得

        =/g=6 m(题给)

即      ==6×9.81 J/kg =58.56 J/kg                                   (a)

        

将ub代入式(a),并简化得    

                                                             (b)

    λ与Re及e/d有关,采用试差法,设λ=0.021代入式(b),求出d=0.0904m。

    下面验算所设的λ值是否正确:

             

        

10 ℃水物性由附录查得 

        ρ=1000 kg/m3,μ=130.77×10-5 Pa

        

由e/d及Re,查得λ=0.021

故      

                  

         习题22附图                                                                                       

22.如本题附图所示,自水塔将水送至车间,输送管路用mm的钢管,管路总长为190 m(包括管件与阀门的当量长度,但不包括进、出口损失)。水塔内水面维持恒定,并高于出水口15 m。设水温为12 ℃,试求管路的输水量(m3/h)。  

解:在截面和截面之间列柏努利方程式,得

                  

                                              (1)

采用试差法, 

代入式(1)得,

故假设正确, 

管路的输水量

                  

         习题23附图

                                                       

    23.本题附图所示为一输水系统,高位槽的水面维持恒定,水分别从BC与BD两支管排出,高位槽液面与两支管出口间的距离均为11 。AB管段内径为38 m、长为58 m;BC支管的内径为32 mm、长为12.5 m;BD支管的内径为26 mm、长为14 m,各段管长均包括管件及阀门全开时的当量长度。AB与BC管段的摩擦系数均可取为0.03。试计算(1)当BD支管的阀门关闭时,BC支管的最大排水量为多少(m3/h);(2)当所有阀门全开时,两支管的排水量各为多少(m3/h)?(BD支管的管壁绝对粗糙度,可取为0.15 mm,水的密度为1000 kg/m3,黏度为。)

    解:(1)当BD支管的阀门关闭时,BC支管的最大排水量

    在高位槽水面1-1,与BC支管出口内侧截面C-C,间列机械能衡算方程,并以截面C-C,为基准平面得

        

式中    z1=11 m,zc=0,ub1≈0,p1=pc

故      =9.81×11=107.9J/kg                                        (a)

                                                      (b)

        

                                            (c)

                                            (d)

                        (e)

将式(e)代入式(b)得

                                             (f)

将式(f)、(d)代入式(b),得

        

        ubC=ub,BC,并以∑hf值代入式(a),解得

        ub,BC=2.45 m/s

故      VBC=3600××0.0322×2.45 m3/h=7.10 m3/h

    (2)当所有阀门全开时,两支管的排水量根据分支管路流动规律,有

                                      (a)

两支管出口均在同一水平面上,下游截面列于两支管出口外侧,于是上式可简化为

        

        

              

        

将值代入式(a)中,得

                                                   (b)

    分支管路的主管与支管的流量关系为  

        VAB=VBC+VBD

        

        

上式经整理后得  

                                           (c)

在截面1-1,与C-C’间列机械能衡算方程,并以C-C’为基准水平面,得

                                               (d)

上式中  z1=11 m,zC=0,ub1≈0,ub, C≈0

上式可简化为

        

前已算出  

因此    

在式(b)、(c)、(d)中,ub,AB、ub,BC、ub,BD即λ均为未知数,且λ又为ub,BD的函数,可采用试差法求解。设ub,BD=1.45 m/s,则

          

查摩擦系数图得λ=0.034。将λ与ub,BD代入式(b)得

       

解得    

将ub,BC、ub,BD值代入式(c),解得

        

将ub,AB、ub,BC值代入式(d)左侧,即   

        

    计算结果与式(d)右侧数值基本相符(108.4≈107.9),故ub,BD可以接受,于是两支管的排水量分别为

        

        

24.在内径为300 mm的管道中,用测速管测量管内空气的流量。测量点处的温度为20 ℃,真空度为500 Pa,大气压力为98.66×103 Pa。测速管插入管道的中心线处。测压装置为微差压差计,指示液是油和水,其密度分别为835 kg/m3和998 kg/m3 ,测得的读数为100 mm。试求空气的质量流量(kg/h)。

解: 

查附录得,20 ℃,101.3 kPa时空气的密度为1.203 kg/m3,黏度为1.81×10-5 Pa,则管中空气的密度为

查图1-28,得

    25.在mm的管路上装有标准孔板流量计,孔板的孔径为16.4 mm,管中流动的是20 ℃的甲苯,采用角接取压法用U管压差计测量孔板两侧的压力差,以水银为指示液,测压连接管中充满甲苯。现测得U管压差计的读数为600 mm,试计算管中甲苯的流量为多少(kg/h)?

    解:已知孔板直径do=16.4 mm,管径d1=33 mm,则

        

设Re>Reo,由教材查图1-30得Co=0.626,查附录得20 ℃甲苯的密度为866 kg/m3,黏度为0.6×10-3 Pa·s。甲苯在孔板处的流速为

        

甲苯的流量为 

检验Re值,管内流速为 

        

        

原假定正确。

习题26附图

非牛顿型流体的流动

26.用泵将容器中的蜂蜜以6.28×10-3 m3/s流量送往高位槽中,管路长(包括局部阻力的当量长度)为20 m,管径为0.l m,蜂蜜的流动特性服从幂律,密度ρ=1250 kg /m3,求泵应提供的能量(J /kg)。

解:在截面和截面之间列柏努利方程式,得

; 

下载本文

显示全文
专题