视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
中考数学圆的综合-经典压轴题及详细答案
2025-09-26 16:50:17 责编:小OO
文档


一、圆的综合 真题与模拟题分类汇编(难题易错题)

1.(1)如图1,在矩形ABCD 中,点O 在边AB 上,∠AOC =∠BOD ,求证:AO =OB ; (2)如图2,AB 是⊙O 的直径,PA 与⊙O 相切于点A ,OP 与⊙O 相交于点C ,连接CB ,∠OPA =40°,求∠ABC 的度数.

【答案】(1)证明见解析;(2)25°.

【解析】

试题分析: (1)根据等量代换可求得∠AOD=∠BOC ,根据矩形的对边相等,每个角都是直角,可知∠A=∠B=90°,AD=BC ,根据三角形全等的判定AAS 证得△AOD ≌△BOC ,从而得证结论.

(2)利用切线的性质和直角三角形的两个锐角互余的性质得到圆心角∠POA 的度数,然后利用圆周角定理来求∠ABC 的度数.

试题解析:(1)∵∠AOC=∠BOD

∴∠AOC -∠COD=∠BOD-∠COD

即∠AOD=∠BOC

∵四边形ABCD 是矩形

∴∠A=∠B=90°,AD=BC

∴AOD BOC ∆≅∆

∴AO=OB

(2)解:∵AB 是O 的直径,PA 与O 相切于点A , ∴PA ⊥AB ,

∴∠A=90°.

又∵∠OPA=40°,

∴∠AOP=50°,

∵OB=OC ,

∴∠B=∠OCB.

又∵∠AOP=∠B+∠OCB , ∴1252

B OCB AOP ∠=∠=∠=︒.

2.(类比概念)三角形的内切圆是以三个内角的平分线的交点为圆心,以这点到三边的距离为半径的圆,则三角形可以称为圆的外切三角形,可以得出三角形的三边与该圆相切.以此类推,如图1,各边都和圆相切的四边形称为圆外切四边形

(性质探究)如图1,试探究圆外切四边形的ABCD 两组对边AB ,CD 与BC ,AD 之间的数

猜想结论:(要求用文字语言叙述)

写出证明过程(利用图1,写出已知、求证、证明)

(性质应用)

①初中学过的下列四边形中哪些是圆外切四边形(填序号)

A:平行四边形:B:菱形:C:矩形;D:正方形

②如图2,圆外切四边形ABCD,且AB=12,CD=8,则四边形的周长是.

③圆外切四边形的周长为48cm,相邻的三条边的比为5:4:7,求四边形各边的长.

【答案】见解析.

【解析】

【分析】

(1)根据切线长定理即可得出结论;

(2)①圆外切四边形是内心到四边的距离相等,即可得出结论;

②根据圆外切四边形的对边和相等,即可求出结论;

③根据圆外切四边形的性质求出第四边,利用周长建立方程求解即可得出结论.

【详解】

性质探讨:圆外切四边形的对边和相等,理由:

如图1,已知:四边形ABCD的四边AB,BC,CD,DA都于⊙O相切于G,F,E,H.

求证:AD+BC=AB+CD.

证明:∵AB,AD和⊙O相切,∴AG=AH,同理:BG=BF,CE=CF,DE=DH,

∴AD+BC=AH+DH+BF+CF=AG+BG+CE+DE=AB+CD,即:圆外切四边形的对边和相等.

故答案为:圆外切四边形的对边和相等;

性质应用:①∵根据圆外切四边形的定义得:圆心到四边的距离相等.

∵平行四边形和矩形不存在一点到四边的距离相等,而菱形和正方形对角线的交点到四边的距离相等.

故答案为:B,D;

②∵圆外切四边形ABCD,∴AB+CD=AD+BC.

∵AB=12,CD=8,∴AD+BC=12+8=20,∴四边形的周长是AB+CD+AD+BC=20+20=40.

故答案为:40;

③∵相邻的三条边的比为5:4:7,∴设此三边为5x,4x,7x,根据圆外切四边形的性质得:第四边为5x+7x﹣4x=8x.

∵圆外切四边形的周长为48cm,∴4x+5x+7x+8x=24x=48,∴x=2,∴此四边形的四边为4x=8cm,5x=10cm,7x=14cm,8x=16cm.

【点睛】

本题是圆的综合题,主要考查了新定义圆的外切的性质,四边形的周长,平行四边形,矩形,菱形,正方形的性质,切线长定理,理解和掌握圆外切四边形的定义是解答本题的关键.

3.如图,已知△ABC内接于⊙O,AB是⊙O的直径,点F在⊙O上,且点C是的中点,过点C作⊙O的切线交AB的延长线于点D,交AF的延长线于点E.

(1)求证:AE⊥DE;

(2)若∠BAF=60°,AF=4,求CE的长.

【答案】(1)证明见解析;(2)

【解析】

试题分析:(1)首先连接OC,由OC=OA,易证得OC∥AE,又由DE切⊙O于点C,易证得AE⊥DE;

(2)由AB是⊙O的直径,可得△ABC是直角三角形,易得△AEC为直角三角形,根据

AE=3求得AC的长,然后连接OF,可得△OAF为等边三角形,知AF=OA=AB,在△ACB 中,利用已知条件求得答案.

试题解析:(1)证明:连接OC,

∵OC=OA,∴∠BAC=∠OCA,

∴∠BAC=∠EAC,

∴∠EAC=∠OCA,

∴OC∥AE,

∵DE切⊙O于点C,

∴OC⊥DE,

∴AE⊥DE;

(2)解:∵AB是⊙O的直径,

∴△ABC是直角三角形,

∵∠CBA=60°,

∴∠BAC=∠EAC=30°,

∵△AEC为直角三角形,AE=3,

∴AC=2,

连接OF,

∵OF=OA,∠OAF=∠BAC+∠EAC=60°,

∴△OAF为等边三角形,

∴AF=OA=AB,

在Rt△ACB中,AC=2,tan∠CBA=,

∴BC=2,

∴AB=4,

∴AF=2.

考点:切线的性质.

4.已知O的半径为5,弦AB的长度为m,点C是弦AB所对优弧上的一动点.()1如图①,若m5=,则C

∠的度数为______;

()2如图②,若m6=.

∠的正切值;

①求C

②若ABC为等腰三角形,求ABC面积.

【答案】()130;()2C ∠①的正切值为34;ABC S 27=②或43225

. 【解析】

【分析】 ()1连接OA ,OB ,判断出AOB 是等边三角形,即可得出结论;

()2①先求出10AD =,再用勾股定理求出8BD =,进而求出tan ADB ∠,即可得出结论;

②分三种情况,利用等腰三角形的性质和垂径定理以及勾股定理即可得出结论.

【详解】

()1如图1,连接OB ,OA ,

OB OC 5∴==,

AB m 5==,

OB OC AB ∴==,

AOB ∴是等边三角形,

AOB 60∠∴=,

1ACB AOB 302

∠∠∴==, 故答案为30;

()2①如图2,连接AO 并延长交O 于D ,连接BD ,

AD 为O 的直径,

AD 10∴=,ABD 90∠=,

在Rt ABD 中,AB m 6==,根据勾股定理得,BD 8=, AB 3tan ADB BD 4

∠∴==, C ADB ∠∠=,

C ∠∴的正切值为34

; ②Ⅰ、当AC BC =时,如图3,连接CO 并延长交AB 于E ,

AC BC =,AO BO =,

CE ∴为AB 的垂直平分线,

AE BE 3∴==,

在Rt AEO 中,OA 5=,根据勾股定理得,OE 4=, CE OE OC 9∴=+=,

ABC 11S AB CE 692722

∴=⨯=⨯⨯=; Ⅱ、当AC AB 6==时,如图4,

连接OA 交BC 于F ,

AC AB =,OC OB =,

AO ∴是BC 的垂直平分线,

过点O 作OG AB ⊥于G , 1AOG AOB 2∠∠∴=,1AG AB 32==, AOB 2ACB ∠∠=,

ACF AOG ∠∠∴=,

在Rt AOG 中,AG 3sin AOG AC 5

∠==, 3sin ACF 5

∠∴=, 在Rt ACF 中,3sin ACF 5

∠=, 318AF AC 55

∴==, 24CF 5

∴=, ABC 111824432S AF BC 225525

∴=⨯=⨯⨯=; Ⅲ、当BA BC 6==时,如图5,由对称性知,ABC 432S 25

=.

【点睛】

圆的综合题,主要圆的性质,圆周角定理,垂径定理,等腰三角形的性质,三角形的面积公式,用分类讨论的思想解决问题是解本题的关键.

5.已知A (2,0),B (6,0),CB ⊥x 轴于点B ,连接AC

画图操作:

(1)在y 正半轴上求作点P ,使得∠APB=∠ACB (尺规作图,保留作图痕迹)

理解应用:

(2)在(1)的条件下,

①若tan∠APB

1

2

=,求点P的坐标

②当点P的坐标为时,∠APB最大拓展延伸:

(3)若在直线y

4

3

=x+4上存在点P,使得∠APB最大,求点P的坐标

【答案】(1)图形见解析(2)(0,2),(0,4)(0,3395

3

-,

125

5

【解析】

试题分析:(1)以AC为直径画圆交y轴于P,连接PA、PB,∠PAB即为所求;

(2)①由题意AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6);

②当⊙K与y轴相切时,∠APB的值最大,(3)如图3中,当经过AB的园与直线相切时,∠APB最大.想办法求出点P坐标即可解决问题;

试题解析:解:(1)∠APB如图所示;

(2)①如图2中,∵∠APB=∠ACB,∴tan∠ACB=tan∠APB=1

2

=

AB

BC

.∵A(2,0),B

(6,0),∴AB=4,BC=8,∴C(6,8),∴AC的中点K(4,4),以K为圆心AK为半径画圆,交y轴于P和P′,易知P(0,2),P′(0,6).

②当⊙K与y轴相切时,∠APB的值最大,此时AK=PK=4,AC=8,

∴BC=22

AC AB

=43,∴C(6,43),∴K(4,22),∴P(0,23).故答案为:(0,23).

(3)如图3中,当经过AB的园与直线相切时,∠APB最大.∵直线y=4

3

x+4交x轴于M

(﹣3,0),交y轴于N(0,4).∵MP是切线,∴MP2=MA•MB,∴MP=35,作

PK⊥OA于K.∵ON∥PK,∴ON

PK

=

OM

MK

=

NM

MP

,∴

4

PK

=

3

MK

=

35

,∴PK=

125

MK=95

,∴OK=

95

﹣3,∴P(

95

﹣3,

125

).

点睛:本题考查了一次函数综合题、直线与圆的位置关系、平行线的性质、切线的判定和性质、勾股定理、锐角三角函数等知识,解题的关键是学会添加常用辅助线解决问题,学会构造辅助圆解决最大角问题,属于中考压轴题.

6.如图,AB是⊙O的直径,D、D为⊙O上两点,CF⊥AB于点F,CE⊥AD交AD的延长线于点E,且CE=CF.

(1)求证:CE是⊙O的切线;

(2)连接CD、CB,若AD=CD=a,求四边形ABCD面积.

【答案】(1)证明见解析;(2)

【解析】

【分析】

(1)连接OC,AC,可先证明AC平分∠BAE,结合圆的性质可证明OC∥AE,可得∠OCB=90°,可证得结论;

(2)可先证得四边形AOCD为平行四边形,再证明△OCB为等边三角形,可求得CF、AB,利用梯形的面积公式可求得答案.

【详解】

(1)证明:连接OC,AC.

∵CF⊥AB,CE⊥AD,且CE=CF.

∴∠CAE=∠CAB.

∵OC=OA,

∴∠CAB=∠OCA.

∴∠CAE=∠OCA.

∴OC∥AE.

∴∠OCE+∠AEC=180°,

∵∠AEC=90°,

∴∠OCE=90°即OC⊥CE,

∵OC是⊙O的半径,点C为半径外端,

∴CE是⊙O的切线.

(2)解:∵AD=CD,

∴∠DAC=∠DCA=∠CAB,

∴DC∥AB,

∵∠CAE=∠OCA,

∴OC∥AD,

∴四边形AOCD是平行四边形,

∴OC=AD=a,AB=2a,

∵∠CAE=∠CAB,

∴CD=CB=a,

∴CB=OC=OB,

∴△OCB 是等边三角形,

在Rt △CFB 中,CF =

, ∴S 四边形ABCD = (DC +AB )•CF =

【点睛】

本题主要考查切线的判定,掌握切线的两种判定方法是解题的关键,即有切点时连接圆心和切点,然后证明垂直,没有切点时,过圆心作垂直,证明圆心到直线的距离等于半径.

7.如图,在直角坐标系中,⊙M 经过原点O(0,0),点A(6,0)与点B(0,-2),点D 在劣弧OA 上,连结BD 交x 轴于点C ,且∠COD =∠CBO.

(1)求⊙M 的半径;

(2)求证:BD 平分∠ABO ;

(3)在线段BD 的延长线上找一点E ,使得直线AE 恰为⊙M 的切线,求此时点E 的坐标.

【答案】(1)M 的半径r 2;(2)证明见解析;(3)点E 的坐标为262). 【解析】 试题分析:根据点A 和点B 的坐标得出OA 和OB 的长度,根据Rt △AOB 的勾股定理得出AB 的长度,然后得出半径;根据同弧所对的圆周角得出∠ABD=∠COD ,然后结合已知条件得出角平分线;根据角平分线得出△ABE ≌△HBE ,从而得出2,从而求出OH 的长度,即点E 的纵坐标,根据Rt △AOB 的三角函数得出∠ABO 的度数,从而得出∠CBO 的度数,然后根据Rt △HBE 得出HE 的长度,即点E 的横坐标.

试题解析:(1)∵点A 6,0),点B 为(02) ∴62 ∴根据Rt △AOB 的勾股定理可得:2∴M 的半径r=122. (2)根据同弧所对的圆周角相等可得:∠ABD=∠COD ∵∠COD=∠CBO ∴∠ABD=∠CBO ∴BD 平分∠ABO

(3)如图,由(2)中的角平分线可得△ABE ≌△HBE ∴2∴2-22

在Rt △AOB 中,3OA OB

=∠ABO=60° ∴∠CBO=30° 在Rt △HBE 中,263=∴点E 262)

考点:勾股定理、角平分线的性质、圆的基本性质、三角函数.

8.如图,在矩形ABCD中,点O在对角线AC上,以OA的长为半径的⊙O与AD、AC分别交于点E、F,且∠ACB=∠DCE.

(1)判断直线CE与⊙O的位置关系,并说明理由;

(2)若AB=2,BC=2,求⊙O的半径.

【答案】(1)直线CE与⊙O相切,理由见解析;(2)⊙O的半径为

6 4

【解析】

【分析】

(1)首先连接OE,由OE=OA与四边形ABCD是矩形,易求得∠DEC+∠OEA=90°,即OE⊥EC,即可证得直线CE与⊙O的位置关系是相切;

(2)首先易证得△CDE∽△CBA,然后根据相似三角形的对应边成比例,即可求得DE的长,又由勾股定理即可求得AC的长,然后设OA为x,即可得方程

222

3)6)

x x

-=,解此方程即可求得⊙O的半径.

【详解】

解:(1)直线CE与⊙O相切.…

理由:连接OE,

∵四边形ABCD是矩形,

∴∠B=∠D=∠BAD=90°,BC∥AD,CD=AB,

∴∠DCE+∠DEC=90°,∠ACB=∠DAC,

又∠DCE=∠ACB,

∴∠DEC+∠DAC=90°,

∵OE=OA,

∴∠OEA=∠DAC,

∴∠DEC +∠OEA =90°,

∴∠OEC =90°,

∴OE ⊥EC ,

∵OE 为圆O 半径,

∴直线CE 与⊙O 相切;…

(2)∵∠B =∠D ,∠DCE =∠ACB ,

∴△CDE ∽△CBA ,

∴ BC AB DC DE =, 又CD =AB =2,BC =2, ∴DE =1

根据勾股定理得EC =3,

又226AC AB BC =+=,…

设OA 为x ,则222(3)(6)x x +=-,

解得6x =, ∴⊙O 的半径为6.

【点睛】

此题考查了切线的判定与性质,矩形的性质,相似三角形的判定与性质以及勾股定理等知识.此题综合性较强,难度适中,解题的关键是注意数形结合思想与方程思想的应用,注意辅助线的作法.

9.如图,AB 为O 的直径,C 、D 为O 上异于A 、B 的两点,连接CD ,过点C 作CE DB ⊥,交CD 的延长线于点E ,垂足为点E ,直径AB 与CE 的延长线相交于点F .

(1)连接AC 、AD ,求证:180DAC ACF ∠+∠=︒.

(2)若2ABD BDC ∠=∠.

①求证:CF 是O 的切线.

②当6BD =,3tan 4

F =时,求CF 的长. 【答案】(1)详见解析;(2)①详见解析;② 203CF =

. 【解析】

【分析】

(1)根据圆周角定理证得∠ADB=90°,即AD ⊥BD ,由CE ⊥DB 证得AD ∥CF ,根据平行线的性质即可证得结论;

(2)①连接OC .先根据等边对等角及三角形外角的性质得出∠3=2∠1,由已知∠4=2∠1,得到∠4=∠3,则OC ∥DB ,再由CE ⊥DB ,得到OC ⊥CF ,根据切线的判定即可证明CF 为⊙O 的切线;

②由CF ∥AD ,证出∠BAD=∠F ,得出tan ∠BAD=tan ∠F=

BD AD =34,求出AD=43BD=8,利用勾股定理求得AB=10,得出OB=OC=,5,再由tanF=

OC CF =34,即可求出CF . 【详解】

解:(1)AB 是O 的直径,且D 为O 上一点,

90ADB ∴∠=︒,

CE DB ⊥,

90DEC ∴∠=︒,

//CF AD ∴,

180DAC ACF ∴∠+∠=︒.

(2)①如图,连接OC .

OA OC =,12∴∠=∠.

312∠=∠+∠,

321∴∠=∠.

42BDC ∠=∠,1BDC ∠=∠,

421∴∠=∠,

43∴∠=∠,

//OC DB ∴.

CE DB ⊥,

OC CF ∴⊥.

又OC 为O 的半径,

CF ∴为O 的切线.

②由(1)知//CF AD ,

BAD F ∴∠=∠, 3tan tan 4BAD F ∴∠==, 34BD AD ∴=. 6BD = 483

AD BD ∴==, 226810AB ∴=+=,5OB OC ==.

OC CF ⊥,

90OCF ∴∠=︒,

3tan 4

OC F CF ∴==, 解得203

CF =. 【点睛】

本题考查了切线的判定、解直角三角形、圆周角定理等知识;本题综合性强,有一定难度,特别是(2)中,需要运用三角函数、勾股定理和由平行线得出比例式才能得出结果.

10.如图,四边形

为菱形,且,以为直径作,与交于点.请仅用无刻度的直尺按下列要求画图.(保留作图痕迹)

(1)在如图中,过点作

边上的高. (2)在如图中,过点作的切线,与交于点.

【答案】(1)如图1所示.(答案不唯一),见解析;(2)如图2所示.(答案不唯一),见解析.

【解析】

【分析】

(2)连接OF交BC于Q,连接PQ即为所求.

【详解】

(1)如图1所示.(答案不唯一)

(2)如图2所示.(答案不唯一)

【点睛】

本题考查作图-复杂作图,菱形和圆的性质等知识,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.下载本文

显示全文
专题