视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
二元一次方程解法练习题精选(含答案)
2025-09-26 16:53:14 责编:小OO
文档
二元一次方程组解法练习题

一.解答题        

1.解下列方程组

(1)                            (2)

(3)                  (4)       

 

(5)                (6).               

(7)                           (8)  

(9)                     (10)   

2.求适合的x,y的值.

3.已知关于x,y的二元一次方程y=kx+b的解有和.

(1)求k,b的值.

(2)当x=2时,y的值.

(3)当x为何值时,y=3?

1.解下列方程组

(1)             (2);

 

(3);                      (4)

                                

 

(5).            (6)                  

  (7)             (8)

(9)             (10);

2.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.

(1)甲把a看成了什么,乙把b看成了什么?(2)求出原方程组的正确解. 

                            

 二元一次方程组解法练习题精选参与试题解析

一.解答题(共16小题)

1.求适合的x,y的值.

考点:

解二元一次方程组.809625 

分析:先把两方程变形(去分母),得到一组新的方程,然后在用加减消元法消去未知数x,求出y的值,继而求出x的值.

解答:解:由题意得:,

由(1)×2得:3x﹣2y=2(3),

由(2)×3得:6x+y=3(4),

(3)×2得:6x﹣4y=4(5),

(5)﹣(4)得:y=﹣,

把y的值代入(3)得:x=,

∴.

点评:本题考查了二元一次方程组的解法,主要运用了加减消元法和代入法.
 

2.解下列方程组

(1)(2)(3)(4).

考点:

解二元一次方程组.809625 

分析:(1)(2)用代入消元法或加减消元法均可;

(3)(4)应先去分母、去括号化简方程组,再进一步采用适宜的方法求解.

解答:解:(1)①﹣②得,﹣x=﹣2,

解得x=2,

把x=2代入①得,2+y=1,

解得y=﹣1.

故原方程组的解为.

(2)①×3﹣②×2得,﹣13y=﹣39,

解得,y=3,

把y=3代入①得,2x﹣3×3=﹣5,

解得x=2.

故原方程组的解为.

(3)原方程组可化为,

①+②得,6x=36,

x=6,

①﹣②得,8y=﹣4,

y=﹣.所以原方程组的解为.                

(4)原方程组可化为:,

①×2+②得,x=,

把x=代入②得,3×﹣4y=6,

y=﹣.

所以原方程组的解为.

点评:利用消元法解方程组,要根据未知数的系数特点选择代入法还是加减法:

①相同未知数的系数相同或互为相反数时,宜用加减法;

②其中一个未知数的系数为1时,宜用代入法.

3.解方程组:

考点:

解二元一次方程组.809625 

专题:

计算题.
分析:先化简方程组,再进一步根据方程组的特点选用相应的方法:用加减法.

解答:解:原方程组可化为,

①×4﹣②×3,得

7x=42,

解得x=6.

把x=6代入①,得y=4.

所以方程组的解为.

点评:;二元一次方程组无论多复杂,解二元一次方程组的基本思想都是消元.消元的方法有代入法和加减法.

 

4.解方程组:

考点:

解二元一次方程组.809625 

专题:

计算题.
分析:把原方程组化简后,观察形式,选用合适的解法,此题用加减法求解比较简单.
解答:解:(1)原方程组化为,

①+②得:6x=18,

∴x=3.

代入①得:y=.

所以原方程组的解为.

点评:要注意:两个二元一次方程中同一未知数的系数相反或相等时,把这两个方程的两边相加或相减,就能消去这个未知数,得到一个一元一次方程,这种方法叫做加减消元法.本题适合用此法.
 

5.解方程组:

考点:

解二元一次方程组.809625 

专题:

计算题;换元法.
分析:本题用加减消元法即可或运用换元法求解.
解答:解:,

①﹣②,得s+t=4,

①+②,得s﹣t=6,

即,

解得.

所以方程组的解为.

点评:此题较简单,要熟练解方程组的基本方法:代入消元法和加减消元法.

 

6.已知关于x,y的二元一次方程y=kx+b的解有和.

(1)求k,b的值.

(2)当x=2时,y的值.

(3)当x为何值时,y=3?

考点:

解二元一次方程组.809625 

专题:

计算题.
分析:(1)将两组x,y的值代入方程得出关于k、b的二元一次方程组,再运用加减消元法求出k、b的值.

(2)将(1)中的k、b代入,再把x=2代入化简即可得出y的值.

(3)将(1)中的k、b和y=3代入方程化简即可得出x的值.

解答:解:

(1)依题意得:

①﹣②得:2=4k,

所以k=,

所以b=.

(2)由y=x+,

把x=2代入,得y=.

(3)由y=x+

把y=3代入,得x=1.

点评:本题考查的是二元一次方程的代入消元法和加减消元法,通过已知条件的代入,可得出要求的数.
 

7.解方程组:

(1);

(2).

考点:

解二元一次方程组.809625 

分析:根据各方程组的特点选用相应的方法:(1)先去分母再用加减法,(2)先去括号,再转化为整式方程解答.

解答:解:(1)原方程组可化为,

①×2﹣②得:

y=﹣1,

将y=﹣1代入①得:

x=1.

∴方程组的解为;

(2)原方程可化为,

即,

①×2+②得:

17x=51,

x=3,

将x=3代入x﹣4y=3中得:

y=0.

∴方程组的解为.

点评:这类题目的解题关键是理解解方程组的基本思想是消元,掌握消元的方法有:加减消元法和代入消元法.

根据未知数系数的特点,选择合适的方法.

 

8.解方程组:

考点:

解二元一次方程组.809625 

专题:

计算题.
分析:本题应把方程组化简后,观察方程的形式,选用合适的方法求解.
解答:解:原方程组可化为,

①+②,得10x=30,

x=3,

代入①,得15+3y=15,

y=0.

则原方程组的解为.

点评:解答此题应根据各方程组的特点,有括号的去括号,有分母的去分母,然后再用代入法或加减消元法解方程组.
 

9.解方程组:

考点:

解二元一次方程组.809625 

专题:

计算题.
分析:本题为了计算方便,可先把(2)去分母,然后运用加减消元法解本题.

解答:解:原方程变形为:,

两个方程相加,得

4x=12,

x=3.

把x=3代入第一个方程,得

4y=11,

y=.

解之得.

点评:本题考查的是二元一次方程组的解法,方程中含有分母的要先化去分母,再对方程进行化简、消元,即可解出此类题目.
 

10.解下列方程组:

(1)

(2)

考点:

解二元一次方程组.809625 

专题:

计算题.
分析:此题根据观察可知:

(1)运用代入法,把①代入②,可得出x,y的值;

(2)先将方程组化为整系数方程组,再利用加减消元法求解.

解答:解:(1),

由①,得x=4+y③,

代入②,得4(4+y)+2y=﹣1,

所以y=﹣,

把y=﹣代入③,得x=4﹣=.

所以原方程组的解为.

(2)原方程组整理为,

③×2﹣④×3,得y=﹣24,

把y=﹣24代入④,得x=60,

所以原方程组的解为.

点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.
 

11.解方程组:

(1)

(2)

考点:

解二元一次方程组.809625 

专题:

计算题;换元法.
分析:方程组(1)需要先化简,再根据方程组的特点选择解法;

方程组(2)采用换元法较简单,设x+y=a,x﹣y=b,然后解新方程组即可求解.

解答:解:(1)原方程组可化简为,

解得.

(2)设x+y=a,x﹣y=b,

∴原方程组可化为,

解得,

∴原方程组的解为.

点评:此题考查了学生的计算能力,解题时要细心.
 

12.解二元一次方程组:

(1);

(2).

考点:

解二元一次方程组.809625 

专题:

计算题.
分析:(1)运用加减消元的方法,可求出x、y的值;

(2)先将方程组化简,然后运用加减消元的方法可求出x、y的值.

解答:解:(1)将①×2﹣②,得

15x=30,

x=2,

把x=2代入第一个方程,得

y=1.

则方程组的解是;

(2)此方程组通过化简可得:,

①﹣②得:y=7,

把y=7代入第一个方程,得

x=5.

则方程组的解是.

点评:此题考查的是对二元一次方程组的解法的运用和理解,学生可以通过题目的训练达到对知识的强化和运用.
 

13.在解方程组时,由于粗心,甲看错了方程组中的a,而得解为,乙看错了方程组中的b,而得解为.

(1)甲把a看成了什么,乙把b看成了什么?

(2)求出原方程组的正确解.

考点:

解二元一次方程组.809625 

专题:

计算题.
分析:(1)把甲乙求得方程组的解分别代入原方程组即可;

(2)把甲乙所求的解分别代入方程②和①,求出正确的a、b,然后用适当的方法解方程组.

解答:解:(1)把代入方程组,

得,

解得:.

把代入方程组,

得,

解得:.

∴甲把a看成﹣5;乙把b看成6;

(2)∵正确的a是﹣2,b是8,

∴方程组为,

解得:x=15,y=8.

则原方程组的解是.

点评:此题难度较大,需同学们仔细阅读,弄清题意再解答.
 

14.

考点:

解二元一次方程组.809625 

分析:先将原方程组中的两个方程分别去掉分母,然后用加减消元法求解即可.
解答:解:由原方程组,得

由(1)+(2),并解得

x=(3),

把(3)代入(1),解得

y=

∴原方程组的解为.

点评:用加减法解二元一次方程组的一般步骤:

1.方程组的两个方程中,如果同一个未知数的系数既不互为相反数又不相等,就用适当的数去乘方程的两边,使一个未知数的系数互为相反数或相等;

2.把两个方程的两边分别相加或相减,消去一个未知数,得到一个一元一次方程;

3.解这个一元一次方程;

4.将求出的未知数的值代入原方程组的任意一个方程中,求出另一个未知数,从而得到方程组的解.

 

15.解下列方程组:

(1);

(2).

考点:

解二元一次方程组.809625 

分析:将两个方程先化简,再选择正确的方法进行消元.
解答:解:(1)化简整理为,

①×3,得3x+3y=1500③,

②﹣③,得x=350.

把x=350代入①,得350+y=500,

∴y=150.

故原方程组的解为.

(2)化简整理为,

①×5,得10x+15y=75③,②×2,得10x﹣14y=46 ④,③﹣④,得29y=29,

∴y=1.

把y=1代入①,得2x+3×1=15,

∴x=6.

故原方程组的解为.

点评:方程组中的方程不是最简方程的,最好先化成最简方程,再选择合适的方法解方程.
 

16.解下列方程组:(1)(2)

考点:

解二元一次方程组.809625 

分析:观察方程组中各方程的特点,用相应的方法求解.
解答:解:(1)①×2﹣②得:x=1,

将x=1代入①得:

2+y=4,

y=2.

∴原方程组的解为;

(2)原方程组可化为,

①×2﹣②得:

﹣y=﹣3,

y=3.

将y=3代入①得:

x=﹣2.

∴原方程组的解为.

下载本文
显示全文
专题