一、拓展提优试题
1.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是 数(填“奇”或“偶”).
2.A、B、C、D四个箱子中分别装有一些小球,现将A 箱中的部分小球按如下要求转移到其他三个箱子中:该箱中原有几个小球,就再放入几个小球,此后,按照同样的方法依次把B、C、D箱中的小球转移到其他箱子中,此时,四个箱子都各有16个小球,那么开始时装有小球最多的是 箱,其中装有 小球个.
3.若A、B、C三种文具分别有38个,78和128个,将每种文具都平均分给学生,分完后剩下2个A,6个B,20个C,则学生最多有 人.
4.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是 ,体积是 .(π取3)
5.(15分)快艇从A码头出发,沿河顺流而下,途经B码头后继续顺流驶向C码头,到达C码头后立即反向驶回B码头,共用10小时,若A、B相距20千米,快艇在静水中航行的速度是40千米/时,河水的流速是10千米/时,求B、C间的距离.
6.(15分)王老师将200块糖分给了甲乙丙三个小朋友,甲比乙的2倍还要多,乙比丙的3倍还要多,那么甲最少有 块糖,丙最多有 块糖.
7.如图,正方形ABCD和EFGH分别被互相垂直的直线分为两个小正方形和两个矩形,小正方形的面积的值已标在图中,分别为20和10,18和12,则正方形ABCD和EFGH中,面积较大的正方形是 .
8.从1,2,3,4,…,15,16这十六个自然数中,任取出n个数,其中必有这样的两个数:一个是另一个的3倍,则n最小是 .
9.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是 立方分米.
10.若一个十位数是99的倍数,则a+b= .
11.从12点整开始,至少经过 分钟,时针和分针都与12点整时所在位置的夹角相等.(如图中的∠1=∠2).
12.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是 平方厘米.(π取3)
13.甲、乙两人分别从A、B两地同时出发,相向而行.甲、乙的速度比是5:3.两人相遇后继续行进,甲到达B地,乙到达A地后都立即沿原路返回.若两人第二次相遇的地点距第一次相遇的地点50千米,则A、B两地相距 千米.
14.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票 张.
15.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于 .
【参】
一、拓展提优试题
1.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;
所以一个学生得分是:
25+3x+y﹣z,
=25+3x+y﹣(20﹣x﹣y),
=5+4x+2y;
4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;
2013个奇数相加的和仍是奇数.
所以所有参赛学生得分的总和是奇数.
故答案为:奇.
2.解:根据最后四个箱子都各有16个小球,所以小球总数为16×4=个,
最后一次分配达到的效果是,从D中拿出一些小球,使A、B、C中的小球数翻倍,则最后一次分配前,A、B、C中各有小球16÷2=8个,由于小球的转移不改变总数,
所以最后一次分配前,D中有小球﹣8﹣8﹣8=40个;于是得到D被分配前的情况:A8,B8,C8,D40;
倒数第二次分配达到的效果是,从C中拿出一些小球,使A、B、D中的小球数翻倍,则倒数第二次分配前,A、B中各有小球8÷2=4个,D中有40÷2=20个,总数不变,
所以最后一次分配前,C中有小球﹣4﹣4﹣20=36个,于是得到C被分配前的情况:A4,B4,C36,D20,
同样的道理,在B被分配前,A中有小球4÷2=2个,C中有小球36÷2=18个,D中有小球20÷2=10个,B中有小球﹣2﹣18﹣10=34个,即B被分配前的情况:A2,B34,C18,D10;
再推导一次,在A被分配前,B中有小球34÷2=17个,C中有小球18÷2=9个,D中有小球10÷2=5个,B中有小球﹣17﹣9﹣5=33个,即A被分配前的情况:A33,B17,C9,D5;
而A被分配前的情况,就是一开始的情况,所以一开始,A箱子装有最多的小球,数量为33个;
答:开始时装有小球最多的是A箱,其中装有33小球个;
故答案为:A,33.
3.解:38﹣2=36(个)
78﹣6=72(个)
128﹣20=108(个)
36、48和108的最大公约数是36,所以学生最多有36人.
故答案为:36.
4.解:10×10×6﹣3×22×2+2×3×2×10,
=600﹣24+120
=696;
10×10×10﹣3×22×10,
=1000﹣120
=880;
答:得到的几何体的表面积是696,体积是880.
故答案为:696,880.
5.解:设B、C间的距离为x千米,由题意,得
+=10,
解得x=180.
答:B、C间的距离为180千米.
6.解:甲比丙的2×3=6倍多,总数就比丙的6+3+1=10倍多200÷(2×3+3+1)=20(块),
丙最多:20﹣1=19(块)
此时甲乙至少有:200﹣19=181(块),
181÷(2+1)=60(块)…1(块),
乙最多60块,
甲至少:60×2+1=121(块).
故答案为:121,19.
7.解:小正方形的面积之和为30时,两正方形的面积差最小,则大正方形的面积越大,
即EFGH的面积较大;
故答案为:EFGH.
8.解:将有3倍关系的放入一组为:(1,3,9)、(2,6)、(4,12)、(5,15)共有4组,
其余7个数每一个数为一组,
即将这16个数可分为11组,.则第一组最多取2个即1和9,其余组最多取一个,
即最多能取12个数保证没有一个数是另一个的三倍,
此时只要再任取一个,即取12+1=13个数必有一个数是另一个数的3倍.
所以n最小是13.
9.解:25.7÷(1+1+3)
=25.7÷5
=5.14(立方分米)
5.14×3=15.42(立方分米)
答:圆柱形铁块的体积是15.42立方分米.
故答案为:15.42.
10.解:根据99的整除特性可知:
20+16++20+17=99.
.
a+b=8.
故答案为:8.
11.解:设所走的时间为x小时.
30x=360﹣360x
3x+360x=360﹣30x+360
390x=360
x=
小时=55分钟.
故答案为:55.
12.解:2×1×4+3×12
=8+3
=11(平方厘米)
答:阴影部分的面积是11平方厘米.
故答案为:11.
13.解:因为,甲乙的速度比为 5:3;总路程是:5+3=8;
第一次相遇时,两人一共行了AB两地的距离,其中甲行了全程的,
相遇地点离A地的距离为AB两地距离的,
第二次相遇时,两人一共行了AB两地距离的3倍,则甲行了全程的=,
相遇地点离A地的距离为AB两地距离的2﹣=,
所以,AB两地的距离为:
50÷()
=50÷
=100(千米)
答:A、B两地相距100千米.
故答案为:100.
14.解:5÷()
=5
=45(张)
答:两人共有邮票 45张.
故答案为:45.
15.解:如图,
设D的面积为x,
9:12=15:x
9x=12×15
x=
x=20
答:第4个角上的小长方形的面积等于20.
故答案为:20.下载本文