视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
无界变量一定是无穷大量吗
2024-09-15 06:00:15 责编:小OO
文档

无界变量不一定是无穷大量。无穷大量的定义是,对于任意的正数G,存在某个正整数N,当n大于N时,数列的第n项的绝对值大于G。而无界变量的定义是,对于任意给定的正数M,都存在某个点x*,使得函数在x*的值大于或等于M。因此,虽然所有无穷大量的函数都是无界的,但并非所有无界变量都是无穷大量。无界变量是指在数学优化问题中,某个变量没有上界或下界的。换句话说,无界变量可以取任意大或任意小的值。在最大化问题中,如果某个变量是无界的,意味着它可以取无限大的值,没有上限。类似地,在最小化问题中,如果某个变量是无界的,意味着它可以取无限小的值,没有下限。

下载本文
显示全文
专题