视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
数据安全法规定国家建立数据什么的保护制度
2024-12-10 15:59:12 责编:小OO
文档

《数据安全法》规定国家建立数据分类分级保护制度。
数据分类分级管理不仅是加强数据交换共享、提升数据资源价值的前提条件,也是数据安全保护场景下的必要条件。《数据安全法》规定国家建立数据分类分级保护制度,对数据实行分类分级保护,数据分类分级工作是基础和核心,数据分类分级是数据使用管理和安全防护的基础,为数据尤其是重要数据制定分类分级制度并依规管理,是实现数据安全目标的重要工作;数据分类分级不仅是数据安全治理的第一步,也是当前数据安全治理的痛点和难点,数据分类分级是非常有挑战性的工作。
数据安全分类分级
数据资产和元数据关联,是数据安全最终的落脚点;
数据定级,这个是数据安全定级的操作标准,从数据标准引申到定级标准,然后为后续的技术性措施提供指引;
安全策略,这个是数据分类分级的真正核心,就是当有了一套所谓的管理制度和规范后,具体如何衔接到纯粹的技术措施和方法,从制度到方法,中间需要一个“实施策略”。
这里的安全策略,是一个基于数据环境,同时主要从数据环境的变更作为“管控点”的策略。
所以,数据安全分类分级工作,要从企业实际情况出发,不是枉顾实际情况,单纯援引理论直接单搞一套重复建设,而是要和企业已有的安全基础设施、制度体系框架、组织结构和流程机制等结合,从痛点入手,查漏补缺,快速的补短板,形成一套更加完整的数据安全管控体系。
数据安全分类分级理解
1、数据分类
数据分类是指企业、组织的数据按照部门归属、业务属性、行业经验等维度对数据进行类别划分,是个系统的复杂工程。数据分类的目的是要便于数据的管理、利用。基本原则是:分类要合理,即在一个明确的业务目标下,确定逻辑清晰的分类维度,并确保数据有且只有一个分类类别。可以从三个维度进行分类
2、数据管理维度:根据数据的一些客观属性进行分类,便于数据管理机构对数据进行管理,便于数据管理系统的规划
3、数据应用维度:根据数据内容的固有属性进行分类,便于数据理解和应用
4、数据所涉及的对象维度:对数据内容的理解的维度,不过更偏向于支撑便于数据权属分析和数据安全管理
数据分级
1、数据分级则是从数据安全、隐私保护和合规的角度对数据的敏感程度进行等级划分。整体来看,建议在数据分类的基础上,根据某类数据的安全属性(如完整性、保密性、可用性),集合数据在经济社会发展中的重要程度,以及一旦遭到篡改、破坏、泄露或者非法获取、非法利用时,对、公共利益或者公民、组织合法权益造成的危害程度,结合自身组织情况将数据分为4—5个安全保护级别。
2、针对定性到定量的问题,需要按照行业需求,结合科学的方法,进行数据信息模型的研究。在实际工作中,可先行结合业务经验进行总结和实践尝试;
3、针对数据分级级数如何确定的问题,根据Gartner报告表明,合理的数据分级最好在3-5级之间,太多会造成大量的管理负担,不利于正常的实施。在政务信息共享领域,可参考2017年发布的《政务信息资源目录编制指南》文件中的数据分级的描述(见下表),并结合本部门业务实际情况进行研究,确定适合的分级级数;
4、针对分级粒度的问题,并无标准化的粒度划分方法,实际工作中又可从3个方面进行评估确定:
首先,需要考虑数据会用来干什么,例如查询统计、建模分析、数据密布型人工智能算法。进行查询统计的数据可以针对查询项和统计项进行细粒度的定级,其他项可以适当增大分级粒度;
其次,要考虑数据的处理方式,例如原始数据未改变、融合产生新数据、剪裁产生新数据、更新等。若原始数据未改变,信息资源分级的粒度可以适量大一些;若要融合产生新数据,分级粒度应当更细一些,避免数据融合分析过程中,暴露原本想隐藏的信息,导致原级别定义不准确;
第三,参考数据在信息系统中的存储和处理方式进行定级粒度划分。结构化和半结构化的信息资源在定级的时候,可以根据用途按照行列或者表级的粒度来定级。非结构化的信息资源定级的粒度建议以单个文件的粒度进行;
5、针对数据分级如何落实的问题,以政务信息共享为例,需要建立更为完善的数据分级流程,理清数据分级在政务信息共享工作中的位置。同时建立分级人员的培训制度、分级的责任制度等,使得对政务信息资源分级能够切实的实施;
针对数据的升降级方法问题,需要制定一系列数据分级的升降级原则,明确在什么情况下数据会发生生升降级变化,通过判断哪些要素进行升降级处理,并制定有效的自动化升降级信息资源预处理机制。
法律依据
《数据安全法》第二十一条 国家建立数据分类分级保护制度,根据数据在经济社会发展中的重要程度,以及一旦遭到篡改、破坏、泄露或者非法获取、非法利用,对、公共利益或者个人、组织合法权益造成的危害程度,对数据实行分类分级保护。国家数据安全工作协调机制统筹协调有关部门制定重要数据目录,加强对重要数据的保护。
关系、国民经济命脉、重要民生、重大公共利益等数据属于国家核心数据,实行更加严格的管理制度。
各地区、各部门应当按照数据分类分级保护制度,确定本地区、本部门以及相关行业、领域的重要数据具体目录,对列入目录的数据进行重点保护。

下载本文
显示全文
专题