视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
点到面距离的公式
2024-08-07 00:28:21 责编:小OO
文档


向量×向量n的和的模长÷向量n的模长。d=向量AB×向量n的和的模长÷向量n的模长,d表示点A到面的距离,向量AB是以点A为起点,以平面上任意一点为终点的向量,向量n是平面的法向量。点到平面距离是指空间内一点到平面内一点的最小长度。特殊的,当点在平面内时,该点到平面的距离为0。点在几何学上指没有长、宽、厚而只有位置的几何图形,是两条线相交处或线段的两端。数学公式确切地反映了事物内部和外部的关系。数学公式是人们在研究自然界物与物之间时发现的一些联系,并通过一定的方式表达出来的一种表达方法,能够表征自然界不同事物之数量之间的或等或不等的联系。

下载本文
显示全文
专题