视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
a1,a2,…an是一组n维向量,怎样证明它们线性无关的充分必要条件是任一n维?
2024-10-24 19:30:59 责编:小OO
文档


证明:充分性:若任一n维向量a都可以n维向量组a1,a2,…,an线性表示,

那么,特别地,n维单位坐标向量组也都可以由它们线性表示,

又向量组a1,a2,…,an也可由n维单位坐标向量线性表示,

所以,向量组a1,a2,…,an与n维单位坐标向量组等价,

而n维单位坐标向量组是线性无关组,

从而向量组a1,a2,…,an也是线性无关组.

必要性 若n维向量组a1,a2,…,an线性无关,又任意n+1个n维向量必线性相关,

设a是任一n维向量,则向量组a,a1,a2,…,an线性相关,

故a可以由a1,a2,…,an线性表示.

1、因为任意n+1个n维向量一定线性相关,设a是任意一个n维向量,则向量组a,a1.a2…an必线性相关,又n维向量组a1.a2…an线性无关,a都可由他们线性表示。
充分性。

2、若任一n维向量a都可由a1.a2…an线性表示,那么,特别的,n维单位坐标向量组也由他们线性表示。而a1.a2…an必可由n维单位坐标向量组线性表示,故a1.a2…an与n维单位坐标向量组等价,而n维单位坐标向量组线性无关,所以1.a2…an线性无关。

下载本文
显示全文
专题