视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
开关电源电路设计实例分析(设计流程)
2025-09-27 16:15:44 责编:小OO
文档
开关电源电路设计实例分析(设计流程)

1. 目的

希望以简短的篇幅,将公司目前设计的流程做介绍,若有介绍不当之处,请不吝指教.

2 设计步骤:

2.1 绘线路图、PCB Layout.

2.2 变压器计算.

2.3 零件选用.

2.4 设计验证.

3 设计流程介绍(以DA-14B33 为例):

3.1 线路图、PCB Layout 请参考资识库中说明.

3.2 变压器计算:

变压器是整个电源供应器的重要核心,所以变压器的计算及验证是很重要的,以下即就DA-14B33 变压器做介绍.

3.2.1 决定变压器的材质及尺寸:

依据变压器计算公式

B(max) = 铁心饱合的磁通密度(Gauss)

Lp = 一次侧电感值(uH)

Ip = 一次侧峰值电流(A)

Np = 一次侧(主线圈)圈数

Ae = 铁心截面积(cm2)

B(max) 依铁心的材质及本身的温度来决定,以TDK FerriteCore PC40 为例,100℃时的B(max)为3900 Gauss,设计时应考虑零件误差,所以一般取3000~3500 Gauss 之间,若所设计的power 为Adapter(有外壳)则应取3000 Gauss 左右,以避免铁心因高温而饱合,一般而言铁心的尺寸越大,Ae 越高,所以可以做较大瓦数的Power。

3.2.2 决定一次侧滤波电容:

滤波电容的决定,可以决定电容器上的Vin(min),滤波电容越大,Vin(win)越高,可以做较大瓦数的Power,但相对价格亦较高。

3.2.3 决定变压器线径及线数:

当变压器决定后,变压器的Bobbin即可决定,依据Bobbin的槽宽,可决定变压器的线径及线数,亦可计算出线径的电流密度,电流密度一般以6A/mm2为参考,电流密度对变压器的设计而言,只能当做参考值,最终应以温升记录为准。

设计流程简介

3.2.4 决定Duty cycle (工作周期):

       由以下公式可决定Duty cycle ,Duty cycle 的设计一般以50%为基准,Duty cycle 若超过50%易导致振荡的发生。

     

       NS = 二次侧圈数

       NP = 一次侧圈数

       Vo = 输出电压

       VD= 二极管顺向电压

       Vin(min) = 滤波电容上的谷点电压

       D = 工作周期(Duty cycle)

3.2.5 决定Ip 值:

    

     Ip = 一次侧峰值电流

     Iav = 一次侧平均电流

     Pout = 输出瓦数

     h =效率

     f = PWM 振荡频率

3.2.6 决定辅助电源的圈数:

        依据变压器的圈比关系,可决定辅助电源的圈数及电压。

3.2.7 决定MOSFET 及二次侧二极管的Stress(应力):依据变压器的圈比关系,可以初步计算出变压器的应力(Stress)是否符合选用零件的规格,计算时以输入电压2V(电容器上为380V)为基准。

3.2.8 其它:

        若输出电压为5V 以下,且必须使用TL431 而非TL432 时,须考虑多一组绕组提供Photo coupler 及TL431 使用。

3.2.9 将所得资料代入公式中,如此可得出

         B(max),若B(max)值太高或太低则参数必须重新调整。

3.2.10 DA-14B33 变压器计算:

          输出瓦数13.2W(3.3V/4A),Core = EI-28,可绕面积(槽宽)=10mm,Margin Tape = 2.8mm(每边),剩余可绕面积=4.4mm.

         假设fT = 45 KHz ,Vin(min)=90V,η =0.7,P.F.=0.5(cos θ),Lp=1600 Uh

     计算式:

变压器材质及尺寸:

      由以上假设可知材质为PC-40,尺寸=EI-28,Ae=0.86cm2,可绕面积(槽宽)=10mm,因Margin Tape使用2.8mm,所以剩余可绕面积为4.4mm.

2 假设滤波电容使用47uF/400V,Vin(min)暂定90V。

l 决定变压器的线径及线数:

2 假设NP使用0.32ψ的线

电流密度

可绕圈数

假设Secondary使用0.35ψ的线

假设使用4P,则

决定Duty cycle:

假设Np=44T,Ns=2T,VD=0.5(使用schottky Diode)

决定Ip 值:

决定辅助电源的圈数:

假设辅助电源=12V

假设使用0.23ψ的线

若NA1=6Tx2P,则辅助电源=11.4V

决定MOSFET 及二次侧二极管的Stress(应力):

Ns

                                 

其它:

因为输出为3.3V,而TL431 的Vref值为2.5V,若再加上photo coupler 上的压降约1.2V,将使得输出电压无法推动Photo coupler 及TL431,所以必须另外增加一组线圈提供回授路径所需的电压。

假设NA2 = 4T 使用0.35ψ线,则

所以可将NA2定为4Tx2P

变压器的接线图:

3.3 零件选用:

零件位置(标注)请参考线路图: (DA-14B33 Schematic)

3.3.1 FS1保险丝:

由变压器计算得

到Iin 值,以此Iin值(0.42A)可知使用公司共享料2A/250V,设计时亦须考虑Pin(max)时的Iin是否会超过保险丝的额定值。

3.3.2 TR1(热敏电阻):

电源启动的瞬间,由于C1(一次侧滤波电容)短路,导致Iin电流很大,虽然时间很短暂,但亦可能对Power 产生伤害,所以必须在滤波电容

之前加装一个热敏电阻,以开机瞬间Iin在Spec 之内(115V/30A,230V/60A),但因热敏电阻亦会消耗功率,所以不可放太大的阻值(否则会影响效率),一般使用SCK053(3A/5Ω),若C1 电容使用较大的值,则必须考虑将热敏电阻的阻值变大(一般使用在大瓦数的Power 上)。

3.3.3 VDR1(突波吸收器):

当雷极发生时,可能会损坏零件,进而影响Power 的正常动作,所以必须在靠AC 输入端 (Fuse 之后),加上突波吸收器来保护

0.32Φx1Px22T

0.32Φx1Px22T

0.35Φx2Px4T

0.35Φx4Px2T

0.23Φx2Px6T

设计流程简介

Power(一般常用07D471K),但若有价格上的考虑,可先忽略不装。

3.3.4 CY1,CY2(Y-Cap):

Y-Cap 一般可分为Y1 及Y2 电容,若AC Input 有FG(3 Pin)一般使用Y2- Cap , AC Input 若为2Pin(只有L,N)一般使用Y1-Cap,Y1与Y2 的差异,除了价格外(Y1 较昂贵),绝缘等级及耐压亦不同(Y1称为双重绝缘,绝缘耐压约为Y2 的两倍,且在电容的本体上会有“回”符号或注明Y1),此电路因为有FG 所以使用Y2-Cap,Y-Cap会影响EMI特性,一般而言越大越好,但须考虑漏电及价格问题,漏电(Leakage Current )必须符合安规须求(3Pin 公司标准为750uAmax)。

3.3.5 CX1(X-Cap)、RX1:X-Cap 为防制EMI零件,EMI 可分为Conduction及Radiation 两部分,Conduction 规范一般可分为: FCC Part 15J Class B 、 CISPR22(EN55022) Class B 两种 , FCC测试频率在450K~30MHz,CISPR22 测试频率在150K~30MHz, Conduction可在厂内以频谱分析仪验证,Radiation 则必须到实验室验证,X-Cap 一般对低频段(150K ~数M 之间)的EMI 防制有效,一般而言X-Cap 愈大,EMI 防制效果愈好(但价格愈高),若X-Cap 在0.22uf 以上(包含0.22uf),安规规定必须要有泄放电阻(RX1,一般为1.2MΩ 1/4W)。

3.3.6 LF1(Common Choke):

EMI 防制零件,主要影响Conduction 的中、低频段,设计时必须同时考虑EMI特性及温升,以同样尺寸的Common Choke 而言,线圈数愈多(相对的线径愈细),EMI 防制效果愈好,但温升可能较高。

3.3.7 BD1(整流二极管): 

将AC 电源以全波整流的方式转换为DC,由变压器所计算出的Iin值,可知只要使用1A/600V 的整流二极管,因为是全波整流所以耐压只要600V 即可。

3.3.8 C1(滤波电容):

由C1 的大小(电容值)可决定变压器计算中的Vin(min)值,电容量愈大,Vin(min)愈高但价格亦愈高,此部分可在电路中实际验证Vin(min)

是否正确,若AC Input 范围在90V~132V (Vc1 电压最高约190V),可使用耐压200V 的电容;若AC Input 范围在90V~2V(或180V~2V),因Vc1 电压最高约380V,所以必须使用耐压400V 的电容。

3.3.9 D2(辅助电源二极管):

整流二极管,一般常用FR105(1A/600V)或BYT42M(1A/1000V),两者主要差异:

1.耐压不同(在此处使用差异无所谓)

2.VF不同(FR105=1.2V,BYT42M=1.4V)

3.3.10 R10(辅助电源电阻):

主要用于调整PWM IC 的VCC 电压,以目前使用的3843 而言,设计时VCC 必须大于8.4V(Min. Load 时),但为考虑输出短路的情况,VCC 电压不可设计的太高,以免当输出短路时不保护(或输入瓦数过大)。

3.3.11 C7(滤波电容):

辅助电源的滤波电容,提供PWM IC 较稳定的直流电压,一般使用100uf/25V 电容。

3.3.12 Z1(Zener 二极管):

当回授失效时的保护电路,回授失效时输出电压冲高,辅助电源电压相对提高,此时若没有保护电路,可能会造成零件损坏,若在3843VCC 与3843 Pin3 脚之间加一个Zener Diode,当回授失效时ZenerDiode 会崩溃,使得Pin3 脚提前到达1V,以此可输出电压,达到保护零件的目的.Z1 值的大小取决于辅助电源的高低,Z1 的决定亦须考虑是否超过Q1 的VGS耐压值,原则上使用公司的现有料(一般使用1/2W 即可).

3.3.13 R2(启动电阻):

提供3843 第一次启动的路径,第一次启动时透过R2 对C7 充电,以提供3843 VCC 所需的电压,R2 阻值较大时,turn on的时间较长,但短路时Pin 瓦数较小,R2 阻值较小时,turn on的时间较短,短路时Pin 瓦数较大,一般使用220KΩ/2W M.O。

3.3.14 R4 (Line Compensation):

高、低压补偿用,使3843 Pin3 脚在90V/47Hz 及2V/63Hz 接近一致(一般使用750KΩ~1.5MΩ 1/4W 之间)。

3.3.15 R3,C6,D1 (Snubber):

此三个零件组成Snubber,调整Snubber 的目的:1.当Q1 off 瞬间会有Spike 产生,调整Snubber 可以确保Spike 不会超过Q1 的耐压值,

2. 调整Snubber 可改善EMI. 一般而言, D1 使用1N4007(1A/1000V)EMI 特性会较好.R3 使用2W M.O.电阻,C6 的耐压值以两端实际压差为准(一般使用耐压500V 的陶质电容)。

3.3.16 Q1(N-MOS):

目前常使用的为3A/600V 及6A/600V 两种,6A/600V 的RDS(ON)较3A/600V 小,所以温升会较低,若IDS 电流未超过3A,应该先以3A/600V 为考虑,并以温升记录来验证,因为6A/600V 的价格高于3A/600V 许多,Q1 的使用亦需考虑VDS是否超过额定值。

3.3.17 R8:

R8 的作用在保护Q1,避免Q1 呈现浮接状态。

3.3.18 R7(Rs 电阻):

3843 Pin3 脚电压最高为1V,R7 的大小须与R4 配合,以达到高低压平衡的目的,一般使用2W M.O.电阻,设计时先决定R7 后再加上R4 补偿,一般将3843 Pin3 脚电压设计在0.85V~0.95V 之间(视瓦数而定,若瓦数较小则不能太接近1V,以免因零件误差而顶到1V)。

3.3.19 R5,C3(RC filter):

滤除3843 Pin3 脚的噪声,R5 一般使用1KΩ 1/8W,C3 一般使用102P/50V 的陶质电容,C3 若使用电容值较小者,重载可能不开机(因为3843 Pin3 瞬间顶到1V);若使用电容值较大者,也许会有轻载不开机及短路Pin 过大的问题。

3.3.20 R9(Q1 Gate 电阻 ):

R9电阻的大小,会影响到EMI及温升特性,一般而言阻值大,Q1 turnon / turn off 的速度较慢,EMI特性较好,但Q1 的温升较高、效率较低(主要是因为turn off速度较慢);若阻值较小, Q1 turn on / turn off 的速度较快,Q1 温升较低、效率较高,但EMI 较差,一般使用

51Ω-150Ω 1/8W。

3.3.21 R6,C4(控制振荡频率):

决定3843 的工作频率,可由Data Sheet 得到R、C 组成的工作频率,C4 一般为10nf的电容(误差为5%),R6 使用精密电阻,以DA-14B33为例,C4 使用103P/50V PE电容,R6 为3.74KΩ 1/8W 精密电阻,振荡频率约为45 KHz。

3.3.22 C5:

功能类似RC filter,主要功用在于使高压轻载较不易振荡,一般使用101P/50V 陶质电容。

3.3.23 U1(PWM IC):

3843 是PWM IC 的一种,由Photo Coupler (U2)回授信号控制DutyCycle 的大小,Pin3 脚具有限流的作用(最高电压1V),目前所用的3843 中,有KA3843(SAMSUNG)及UC3843BN(S.T.)两种,两者脚位相同,但产生的振荡频率略有差异,UC3843BN 较KA3843 快了约2KHz,fT的增加会衍生出一些问题(例如:EMI 问题、短路问题),因KA3843 较难买,所以新机种设计时,尽量使用UC3843BN。 

3.3.24 R1、R11、R12、C2(一次侧回路增益控制):3843 内部有一个Error AMP(误差放大器),R1、R11、R12、C2 及Error AMP 组成一个负反馈电路,用来调整回路增益的稳定度,回路增益,调整不恰当可能会造成振荡或输出电压不正确,一般C2 使用立式积层电容(温度持性较)。

3.3.25 U2(Photo coupler)

光耦合器(Photo coupler)主要将二次侧的信号转换到一次侧(以电流的方式),当二次侧的TL431 导通后,U2 即会将二次侧的电流依比例转换到一次侧,此时3843 由Pin6 (output)输出off 的信号(Low)来关闭Q1,使用Photo coupler 的原因,是为了符合安规需求(primacy to

secondary的距离至少需5.6mm)。

3.3.26 R13(二次侧回路增益控制):

控制流过Photo coupler的电流,R13 阻值较小时,流过Photo coupler的电流较大,U2 转换电流较大,回路增益较快(需要确认是否会造

成振荡),R13 阻值较大时,流过Photo coupler 的电流较小,U2 转换电流较小,回路增益较慢,虽然较不易造成振荡,但需注意输出电压是否正常。

3.3.27 U3(TL431)、R15、R16、R18

调整输出电压的大小,,输出电压不可超过38V(因为TL431 VKA最大为36V,若再加Photo coupler 的VF值,则Vo 应在38V 以下较安全),TL431 的Vref 为2.5V,R15 及R16并联的目的使输出电压能微调,且R15 与R16 并联后的值不可太大(尽量在2KΩ以下),以免造成输出不准。

3.3.28 R14,C9(二次侧回路增益控制):

控制二次侧的回路增益,一般而言将电容放大会使增益变慢;电容放小会使增益变快,电阻的特性则刚好与电容相反,电阻放大增益变快;电阻放小增益变慢,至于何谓增益调整的最佳值,则可以Dynamic load 来量测,即可取得一个最佳值。

3.3.29 D4(整流二极管):

因为输出电压为3.3V,而输出电压调整器(Output Voltage Regulator)使用TL431(Vref=2.5V)而非TL432(Vref=1.25V),所以必须多增加一

组绕组提供Photo coupler 及TL431 所需的电源,因为U2 及U3 所需的电流不大(约10mA 左右),二极管耐压值100V 即可,所以只需使

用1N4148(0.15A/100V)。

3.3.30 C8(滤波电容):

因为U2 及U3 所需的电流不大,所以只要使用1u/50V 即可。

3.3.31 D5(整流二极管):

输出整流二极管,D5 的使用需考虑:

a. 电流值

b. 二极管的耐压值

以DA-14B33 为例,输出电流4A,使用10A 的二极管(Schottky)应该可以,但经点温升验证后发现D5 温度偏高,所以必须换为15A的二极管,因为10A 的VF较15A 的VF 值大。耐压部分40V 经验证后符合,因此最后使用15A/40V Schottky。

3.3.32 C10,R17(二次侧snubber) :

D5 在截止的瞬间会有spike 产生,若spike 超过二极管(D5)的耐压值,二极管会有被击穿的危险,调整snubber 可适当的减少spike 的

电压值,除保护二极管外亦可改善EMI,R17 一般使用1/2W 的电阻,C10一般使用耐压500V的陶质电容,snubber调整的过程(2V/63Hz)

需注意R17,C10 是否会过热,应避免此种情况发生。

3.3.33 C11,C13(滤波电容):

二次侧第一级滤波电容,应使用内阻较小的电容(LXZ,YXA…),电容选择是否洽当可依以下三点来判定:

a. 输出Ripple 电压是符合规格

b. 电容温度是否超过额定值

c. 电容值两端电压是否超过额定值

3.3.34 R19(假负载):

适当的使用假负载可使线路更稳定,但假负载的阻值不可太小,否则会影响效率,使用时亦须注意是否超过电阻的额定值(一般设计只

使用额定瓦数的一半)。

3.3.35 L3,C12(LC 滤波电路):

LC 滤波电路为第二级滤波,在不影响线路稳定的情况下,一般会将L3 放大(电感量较大),如此C12 可使用较小的电容值。

4 设计验证:(可分为三部分)

a. 设计阶段验证

b. 样品制作验证

c. QE 验证

4.1 设计阶段验证

设计实验阶段应该养成记录的习惯,记录可以验证实验结果是否与电气规格相符,以下即就DA-14B33 设计阶段验证做说明(验证项目视规格而定)。

4.1.1 电气规格验证:

4.1.1.1 3843 PIN3 脚电压(full load 4A) :

90V/47Hz = 0.83V

115V/60Hz = 0.83V

132V/60Hz = 0.83V

180V/60Hz = 0.86V

230V/60Hz = 0.88V

2V/63Hz = 0.91V

4.1.1.2 Duty Cycle , fT:

4.1.1.3 Vin(min) = 100V (90V / 47Hz full load)

4.1.1.4 Stress (2V / 63Hz full load) :

4.1.1.5 辅助电源(开机,满载)、短路Pin max.:

4.1.1.6 静态(满负荷)

 Pin(w)Iin(A)Iout(A)Vout(V)P.F.Ripple(mV)Pout(w)eff
90V/47Hz18.70.3643.300.573213.2270.7
115V/60Hz18.60..3143.300.522813.2271.1
132V/60Hz18.60.2843.300.502913.2271.1
180V/60Hz18.70.2143.300.493013.2370.7
230V/60Hz18.90.1843.300.462913.2269.9
2V/60Hz19.20.1643.300.452913.2368.9
4.1.1.7 Full Range 负载(0.3A-4A)

(验证是否有振荡现象)

4.1.1.8 反馈失效(输出轻载)

90V/47Hz ê Vout = 8.3V

2V/63Hz ê Vout = 6.03V

4.1.1.9 O.C.P.(过电流保护)

90V/47Hz = 7.2A

2V/63Hz = 8.4A

4.1.1.10 Pin(max.)

90V/47Hz = 24.9W

2V/63Hz = 27.1W

4.1.1.11 Dynamic test

H=4A,t1=25ms,slew Rate = 0.8A/ms (Rise)

L=0.3A,t2=25ms,slew Rate = 0.8A/ms (Full)

4.1.1.12 HI-POT test:

HI-POT test 一般可分为两种等级:

 输入为3 Pin(有FG 者),HI-POT test 为1500Vac/1 minute。Y-CAP 使用Y2-CAP

 输入为2 Pin(无FG 者),HI-POT test 为3000Vac/1 minute。Y-CAP 使用Y1-CAP

DA-14B33 属于输入3 PIN HI-POT test 为1500Vac/1 minute。

4.1.1.13 Grounding test:

输入为3 Pin(有FG 者),一般均要测接地阻(Grounding test),安规规定FG 到输出线材(输出端)的接地电阻不能超过100mΩ(25A/3 Second)。

4.1.1.14 温升记录

设计实验定案后(暂定),需针对整体温升及EMI 做评估,若温升或EMI 无法符合规格,则需重新实验。温升记录请参考附件,D5 原来使用BYV118(10A/40V Schottky),因温升较高改为PBYR1540CTX(15A/40V)。

4.1.1.15 EMI 测试:

EMI 测试分为二类:

Conduction(传导干扰)

 Radiation(幅射干扰)

前者视规范不同而有差异(FCC : 450K - 30MHz,CISPR 22 :150K- 30MHz),前者可利用厂内的频谱分析仪验证;后者(范围由30M- 300MHz,则因厂内无设备必须到实验室验证,Conduction,Radiation 测试数据请参考附件) 。

4.1.1.16 机构尺寸:

设计阶段即应对机构尺寸验证,验证的项目包括 : PCB尺寸、零件限高、零件禁置区、螺丝孔位置及孔径、外壳孔寸….,若设计阶段无法验证,则必须在样品阶段验证。

4.1.2 样品验证:

样品制作完成后,除温升记录、EMI测试外(是否需重新验证,视情况而定),每一台样品都应经过验证(包括电气及机构尺寸),此阶段的电气验证可以以ATE(Chroma)测试来完成,ATE测试必须与电气规格相符。

4.1.3 QE 验证:

QE 针对工程部所提供的样品做验证,工程部应提供以下交件及样品供QE 验证。

高频开关电源原理与设计电路图下载本文

显示全文
专题