视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
FAA旋翼机飞行手册
2025-09-27 16:10:59 责编:小OO
文档
直升机和旋翼机都是通过旋翼来产生升力的,因此解释升力产生的许多基本空气动力学原理对两种飞行器而言是相同的。这些基本原理在《第2章:一般的空气动力学》里有详细的解释,这些原理也同样构成了旋翼机空气动力学讨论的基础。

[自旋]

直升机和旋翼机之间一个根本的不同在于:在依靠动力维持飞行的过程中,旋翼机旋翼系统工作在自旋状态下。这意味着旋翼依靠向上流过翼面的气流维持自身的自由旋转,而不是通过发动机的动力旋转翼面,从上方吸收气流。[图16-1]在自旋过程中产生的力一方面维持旋翼的旋转,另一方面产生将飞行器维持在空中的升力。从空气动力学的角度而言,在正常飞行时旋翼机旋翼系统的运转和直升机的旋翼系统在发动机失效时,向前自旋下降时的运转方式一样。 

图16-1. 在旋翼机上气流通过旋翼系统的方向和动力飞行状态下的直升机相反。这些气流是把动力从旋翼机发动机传送到旋翼系统并保持旋翼自转的媒介。

[垂直自旋]

图16-2. 在垂直自旋中,桨叶旋转造成的相对气流和向上的气流合成了最终流经翼型表面的气流。

[桨盘分区]

无论选用什么样的翼型,旋翼产生的升力总是垂直于相对气流的方向。处于自旋中的旋翼相对气流的攻角在内侧较大而在外侧较小,因此靠近桨毂的内侧旋翼产生的升力具有较大的向前分量,而靠近翼尖的旋翼产生较大的垂直分量。这种现象造成了桨盘的不同功能分区,从而产生自旋状态下飞行所必需的力。

如图16-4所示,自旋区域,又称驱动区域,产生的总气动力(TAF)的前向分量超过所有的后向空气阻力的总和,从而保持了桨叶的旋转。螺旋桨区,又称被驱动区,产生的总气动力具有较大的垂直分量,从而保证旋翼机能够在空中飞行。靠近桨盘中心是失速区。在失速区里桨叶周向运动的相对气流太小,以至于合成气流的角度超过了翼型的失速极限。失速区对桨叶旋转产生空气阻力,必须依靠驱动区域产生的前向力来克服。

图16-4 总气动力在被驱动区落后于旋转轴,在驱动区领先于旋转轴。空气阻力是失速区的主要气动力。垂直自旋的全面力学分析参见《第三章直升机飞行空气动力学》,图3-22。

[向前飞行时的自旋]

截至目前我们讨论的都只是旋翼机垂直下降时自旋的空气动力学。通常情况下旋翼机都是向前飞行的,因此由于向前的飞行速度引起的相对气流与旋翼的相互作用也必须考虑在内。这个气流分量不影响造成桨叶自旋的空气动力学原理,但是会造成桨盘不同区域的形状变化。

当旋翼机在空气中向前运动时,向前的运动速度对于前行桨叶而言将造成相对气流的速度加快,对后行桨叶而言则减小相对气流的速度。为了应对桨盘两侧升力的不平衡,前行桨叶在跷跷板的作用下翘起以减小攻角和升力,与此同时后行桨叶向下以增加攻角和升力。(关于升力不平衡的详细讨论参见《第三章-直升机飞行空气动力学》)前行桨叶的攻角减小导致驱动区域变大,同样,后行桨叶的攻角增加导致更大的失速区域。向前飞行导致原有的桨盘分区向后行桨叶方向移动,其大小和程度和飞行器的飞行速度大小有关。参见图16-5。

[逆向气流]

对于向前飞行的旋翼系统而言,逆向气流(译者:简称反流或者逆流)发生在桨盘后行侧靠近桨毂的部分。这主要是由于飞行速度大于桨叶的旋转速度造成的。

举例来说,桨毂以外2英尺的位置,桨叶旋转一周的周长是12.6英尺。当转速为300r.p.m时,该点的速度是42 m.p.h。如果这时飞行速度为42 m.p.h,在该点上的运动速度刚好互相抵消。从这一点向里桨叶的旋转速度会小于飞行速度,这会造成气流冲击桨叶后缘,相对速度随着向桨毂内部移动而增加。如图16-6所示,逆流区域主要由飞行速度决定,速度增加时逆流区域变大。在一定程度上旋翼系统的旋转速度也会影响这个区域的大小,转低转速更易受逆流的影响,逆流的区域也更大。

[逆行桨叶失速]

在直升机中逆行桨叶失速通常发生在翼尖上,而旋翼机则通常发生在桨毂向外20% ~ 40%位置的区域而不是翼尖上。主要原因在于旋翼机工作在自旋状态下,向前飞行的时候存在后行桨叶靠近桨毂的位置存在固有的失速区域(参见图16-5)。随着飞行速度的增加,后行桨叶的攻角增加以应对升力不对称,这时后行桨叶上的失速区域会向外扩张。由于失速区位于桨盘的内部而不是像直升机一样位于翼尖的位置,所产生的力关于飞行器重心的影响较小。造成的影响是飞行时会感觉到增加了轻微的震动,而不是很大的前后倾或者是横摆趋势。

[旋翼受力分析]

同任何重于空气的飞行器一样,旋翼机飞行时也受到升力,重力,推力和阻力这四种力的作用。旋翼机的升力来自于旋翼系统,推力直接来自螺旋桨。如图16-7所示,旋翼产生的力可以分为两个分量:旋翼升力和旋翼空气阻力。垂直于飞行路径的是旋翼升力,平行于飞行路径的是空气阻力。为了推出整体的飞行器空气阻力反应,必须把机身空气阻力计算在内。

图16-7.在向前飞行时,旋翼机的旋翼系统所受的气动合力方向与直升机相反

[旋翼升力]

旋翼升力可以简单的想象成为支撑飞行器重量的升力。当翼面产生升力的同时,空气阻力也就伴随着产生了。对一个给定的翼型,最有效的攻角是产生最大升力和最小阻力的角度。然而旋翼桨叶并不是工作在这种有效的角度,在每一圈的旋转过程中攻角都在发生变化。而且,旋翼系统必须保持一定的自旋桨距以持续地产生升力。有一些旋翼机安装了小的附加机翼以便在较高巡航速度飞行时产生升力。这些附加的机翼产生的升力可以作为旋翼升力的补充,甚至可以完全取代旋翼升力。

[旋翼空气阻力]

合成的旋翼空气阻力是作用在桨叶的每个桨叶位置上的旋翼空气阻力的总合。每一个桨叶位置的贡献根据速度和角度的不同而不同。当旋翼桨叶旋转的时候,根据不同的位置,旋翼速度,飞行速度等的不同空气阻力也在不断的快速变化。桨盘攻角的变化可以快速有效地影响空气阻力的变化。

旋翼阻力可以分为诱导阻力(induced drag)和翼型阻力(profile drag)。诱导阻力是升力的结果,而翼型阻力是旋翼转速的函数。由于诱导阻力旋翼产生升力的结果,翼型阻力可以被看作是不产生升力时的旋翼阻力。这个阻力可以被理解成在不产生升力的情况下,预旋时为了达到给定的飞行转速所要克服的空气阻力。在具备对称翼型和可变桨距的旋翼机上,这种工作状态可以通过设置旋翼攻角为0度实现。对于安装非对称翼型和固定桨距角的旋翼系统,必须在预旋时克服诱导阻力。而大多数的业余制作的安装跷跷板的旋翼系统正是属于这一类。

[推力]

自旋翼机的推力定义为螺旋桨产生的气动力中平行于相对来流的分量。和其他的作用于飞行器的力一样,推力作用在重心(译者:center of gravity,简称 CG,是自旋翼机的重要常用缩写之一)附近。根据推力作用的位置与重心的关系,螺旋桨的气动力会有一个较小的垂直于相对来流的分量,并且根据位置关系可以表现为额外的升力或者重量。

飞行的时候,机身本质上相当于一个悬挂在旋翼系统下面的重锤,因此容易产生类似于直升机的钟摆运动(pendular action)。和直升机不同的是,自旋翼机的推力直接作用于机身之上而不是通过旋翼系统获得。由此,在飞行的时候作用在自旋翼机和直升机上的力也不尽相同。例如:发动机力矩会使得机身向与螺旋桨转向相反的方向偏转几度,从而使得机身偏离垂直平面。如图16-8所示,通常在大多数的飞行条件下,这种轻微的偏斜是可以忽略的,也不会产生重要影响。

钟摆运动—由于悬挂在旋翼系统下方造成的机身的横向或者纵向摆动,类似于钟摆的运动。进一步的讨论参见《第三章-直升机飞行空气动学》

[稳定性]

飞行器的稳定性有助于减轻飞行员的负担增加安全性。类似于典型的通用飞行教练机一样,一架稳定的飞行器,需要飞行员较少的精力去维持期望的飞行的姿态,在遇到阵风(Gust of wind)或者其他外力的影响的时候会自动修正姿态。相反的,一架不稳定的飞机需要飞行员持续不断的保持注意力以维持飞机的控制。

有很多因素影响自旋翼机的稳定性。其中一个是水平安定面的位置。另一个是机身阻力与重心的关系。第三个是绕俯仰轴的惯性距,第四个是螺旋桨推力线与重心的垂直位置的关系。

然而最重要的因素是旋翼力的作用线和重心水平位置的关系。

[水平安定面]

水平安定面有助于增加纵向的稳定性,离开重心越远越是有效。因为升力正比于速度的平方,所以飞行速度越高水平安定面也就越有效,由于自旋翼机的速度不是很高,制造者可以通过改变水平安定面的大小,调整到重心的距离,或者放置在螺旋桨滑流(slipstream)中来获得期望的稳定性。

[机身阻力 (压力中心)]

如果机身阻力或者压力中心位于重心的后面,自旋翼机被认为是更稳定的设计。对于绕垂直轴的偏航运动尤其是这样。为了达到这个条件就必须有足够大的垂直尾翼面。另外,自旋翼机需要一个平衡的纵轴压力重心以获得足够的周期运动(cyclic movement)防止机头压低或者抬升, 当速度增加时前面的区域聚集了很多的压力。

[俯仰惯量]

不用改变整体重量和重心位置,把重量配置得离重心越远,自旋翼机就越稳定。例如,将飞行员的座位从重心向前移,将发动机从重心向后移,保持重心不变的情况下,自旋翼机会变得更加稳定。这和走钢丝者(tightrope walker)用一根长棍来增加自身的平衡是相同的原理。

[螺旋桨推力线]

仅针对螺旋桨推力线本身而言,如果高于重心,当增加推力的时候,自旋翼机会有头部向下的趋势,而推力减小是会有抬头的趋势。螺旋桨推力线低于重心时,相反的情况会发生。如果推力线恰好通过重心或者在附近通过时,自旋翼机就不会有头部俯仰的动作发生。如图16-9所示。

图16-9.螺旋桨推力线高于重心的自旋翼机通常称为低姿(Low Profile)自旋翼机。螺旋桨推力线低于重心的被认为是高姿(High Profile)自旋翼机.

[旋翼力]

由于一些自旋翼机根本没有水平稳定面,而且螺旋桨推力线也是各不相同,自旋翼机的制造者可以通过把重心调整到旋翼力线的前面或者后面来获得期望的稳定性。如图16-10,假设向前飞行时CG位于旋翼力线的后方。如果阵风增加了攻角,旋翼力增大了。这同时导致了先后行桨叶的升力差,从而增加了桨叶挥舞角,导致旋翼的抬起。这个俯仰动作增加了相对于重心的力矩,导致攻角的进一步增加。这样的结果是一种不稳定的状态。如果CG位于旋翼力线的前方,阵风增加了攻角,导致桨盘产生同样的反应,但是这时旋翼力的增大和桨叶挥舞将减小力矩,从而减小攻角,这种情况就是一种稳定状态。

[配平条件(TRIMMED CONDITION)]

如前所述,制造者通过组合不同的稳定性因素来获得一架配平的自旋翼机(trimmed gyroplane).

例如,如果你有一架重心低于螺旋桨推力线的自旋翼机,在加力的时候螺旋桨推力会造成头部向下的俯仰力矩。在这种类型的自旋翼机上, 为了补偿这种俯仰力矩,重心通常位于旋翼力线的后方。这个位置会产生一个抬头的俯仰力矩。相反的,如果重心高于螺旋桨推力线,重心通常那个位于旋翼力线的前方。当然,机身阻力的位置,俯仰惯量和附加的水平稳定面都可以影响重心的位置。

图16-10.重心位于旋翼力线前方的旋翼机比重心位于旋翼力线后方更稳定.下载本文

显示全文
专题