视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
三角形中线的巧用
2025-09-27 16:25:24 责编:小OO
文档
三角形中线的巧用

 

三角形的中线是与三角形有关线段的重要线段。三角形的中线在解决和三角形面积有关的问题中常常发挥重要作用。

如图1,连接三角形ABC的顶点A和它所对的边BC的中点D,所得线段AD叫△ABC的边BC上的中线。∴BD=CD=BC . AE⊥BC于E,即AE是△ABC的边BC上的高。同时AE也是△ABD、△ACD的高。

根据三角形的面积公式,三角形ABC的面积为,即.

△ABD、△ACD的面积可表示为:

所以△ABD、△ACD的面积相等,都等于△ABC面积的一半。

结论一:三角形的一边的中线把这个三角形分成面积相等的两部分。

例1  如图2,AD、BE是△ABC的两条中线。AD、BE交于G,试比较△BGD和△AGE面积的大小。

析解:因为AD、BE是△ABC的两条中线,根据结论一,三角形ADC的面积等于三角形ABC的面积的一半,三角形BCE的面积也等于三角形ABC的面积的一半。所以=,所以,即.所以△BGD和△AGE的面积相等。

引申:连接GC,则GD是三角形GBC的中线,GE是三角形AGC的中线,根据上面结论一,有,,而,

所以,

,所以

结论二:连接三角形的中线的交点和这个三角形任意两个顶点所组成的三角形的面积等于这个三角形面积的.

例2 (2009贺州)如图3-1,正方形ABCD的 边长为1,E、F分别是AB、BC边上的中点,求图中阴影部分的面积。

分析:图中阴影部分是不规则四边形,须作辅助线转化为规则四边形或三角形。更重要的是要考虑中点的运用。

解:如图3-2,连接BD,则三角形BCD的面积= ,

根据上述结论二,△ BOD的面积等于△BCD的面积的,

即,

∴阴影部分的面积=.

点评:求不规则图形的面积往往是作辅助线转化为三角形加以分析。图中三角形BDO的面积是和三角形BDC的中线有关的,记住上面的两个结论,能够迅速巧妙的求解此题。下载本文

显示全文
专题