视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
一次函数题型总结
2025-09-27 11:52:00 责编:小OO
文档
一次函数题型总结

函数定义

1、判断下列变化过程存在函数关系的是()

A.是变量,B.人的身高与年龄C.三角形的底边长与面积

D.速度一定的汽车所行驶的路程与时间

2、已知函数,当时,=1,则的值为()

A.1B.-1C.3D.

3、下列各曲线中不能表示y是x的函数是(  )。

正比例函数

1、下列各函数中,y与x成正比例函数关系的是(其中k为常数)()

A、y=3x-2B、y=(k+1)xC、y=(|k|+1)xD、y=x2

2、如果y=kx+b,当时,y叫做x的正比例函数

3、一次函数y=kx+k+1,当k=时,y叫做x正比例函数

一次函数的定义

1、下列函数关系中,是一次函数的个数是()

①y=②y=③y=210-x④y=x2-2⑤y=+1

A、1B、2C、3D、4

2、若函数y=(3-m)xm-9是正比例函数,则m=。

3、当m、n为何值时,函数y=(5m-3)x2-n+(m+n)(1)是一次函数(2)是正比例函数

一次函数与坐标系

1.一次函数y=-2x+4的图象经过第象限,y的值随x的值增大而(增大或减少)图象与x轴交点坐标是,与y轴的交点坐标是         .

2.已知y+4与x成正比例,且当x=2时,y=1,则当x=-3时,y=      .

3.已知k>0,b>0,则直线y=kx+b不经过第      象限.

4、若函数y=-x+m与y=4x-1的图象交于y轴上一点,则m的值是(   )

A.      B.     C.     D.

5.如图,表示一次函数y=mx+n与正比例函数y=mnx(m,n是常数,且mn≠0)图像的是().

6、已知一次函数的图象如图1所示,那么的取值范围是()

A.        B.        C.        D.

7.一次函数y=kx+(k-3)的函数图象不可能是()

待定系数法求一次函数解析式

1.已知直线经过点(1,2)和点(3,0),求这条直线的解析式.

2.如图,一次函数y=kx+b的图象经过A、B两点,与x轴相交于C点.求:

(1)直线AC的函数解析式;(2)设点(a,-2)在这个函数图象上,求a的值;

2、(2007甘肃陇南)如图,两摞相同规格的饭碗整齐地叠放在桌面上,请根据图中给的数据信息,解答下列问题:

(1)求整齐摆放在桌面上饭碗的高度y(cm)与饭碗数x(个)之间的一次函数解析式;

(2)把这两摞饭碗整齐地摆成一摞时,这摞饭碗的高度是多少?

4、东从A地出发以某一速度向B地走去,同时小明从B地出发以另一速度向A地而行,如图所示,图中的线段、分别表示小东、小明离B地的距离(千米)与所用时间(小时)的关系。

⑴试用文字说明:交点P所表示的实际意义。

⑵试求出A、B两地之间的距离。

函数图像的平移

1.把直线向上平移3个单位所得到的直线的函数解析式为      .

2、(2007浙江湖州)将直线y=2x向右平移2个单位所得的直线的解析式是()。

A、y=2x+2B、y=2x-2C、y=2(x-2)D、y=2(x+2)

3、将函数y=-6x的图象向上平移5个单位得直线,则直线与坐标轴围成的三角形面积为.

4、在平面直角坐标系中,将直线向下平移4个单位长度后。所得直线的解析式为.

函数的增减性

1、已知点A(x1,y1)和点B(x2,y2)在同一条直线y=kx+b上,且k<0.若x1>x2,则y1与y2的关系是( )

A.y1>y2     B.y1=y2     C.y1<y2    D.y1与y2的大小不确定

2、已知一次函数的图象交轴于正半轴,且随的增大而减小,请写出符合条件的一个解析式:      .

3、写出一个y随x的增大而增大的一次函数的解析式:.

4、在一次函数中,随的增大而    ,当时,y的最小值为            .

函数图像与坐标轴围成的三角形的面积

1、函数y=-5x+2与x轴的交点是与y轴的交点是与两坐标轴围成的三角形面积是。

2.已知直线y=x+6与x轴、y轴围成一个三角形,则这个三角形面积为___。

3、已知:在直角坐标系中,一次函数y=的图象分别与x轴、y轴相交于A、B.若以AB为一边的等腰△ABC的底角为30。点C在x轴上,求点C的坐标.

4、(2010北京)如图,直线y=2x+3与x轴相交于点A,与y轴相交于点B.

求A,B两点的坐标;过B点作直线BP与x轴相交于P,且使OP=2OA,求ΔABP的面积.

5.在平面直角坐标系中,一次函数的图象与坐标轴围成的三角形,叫做此一次函数的坐标三角形.

(1)求函数y=x+3的坐标三角形的三条边长;

(2)若函数y=x+b(b为常数)的坐标三角形周长为16,求此三角形面积.

函数图像中的计算问题

1、甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.以下说法:①乙比甲提前12分钟到达;②甲的平均速度为15千米/小时;③乙走了8km后遇到甲;④乙出发6分钟后追上甲.其中正确的有()

A.4个B.3个C.2个D.1个

2、(2007江苏南京)某市为了鼓励居民节约用水,采用分段计费的方法按月计算每户家庭的水费,月用水量不超过20时,按2元/计费;月用水量超过20时,其中的20仍按2元/收费,超过部分按元/计费.设每户家庭用用水量为时,应交水费元.

(1)分别求出和时与的函数表达式;

(2)小明家第二季度交纳水费的情况如下:

月份四月份五月份六月份
交费金额30元

34元

42.6元

小明家这个季度共用水多少立方米?

3、(2007湖北宜昌)2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y(千米)与时间x(小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港.

(1)哪个队先到达终点?乙队何时追上甲队?

(2)在比赛过程中,甲、乙两队何时相距最远?

应用题中的分段函数

1 某油库有一没储油的储油罐,在开始的8分钟时间内,只开进,不开出,油罐的进油至24吨后,将进和出同时打开16分钟,油罐中的油从24吨增至40吨.随后又关闭进,只开出,直至将油罐内的油放完.假设在单位时间内进与出的流量分别保持不变.写出这段时间内油罐的储油量y(吨)与进出油时间x(分)的函数式及相应的x取值范围.

2、(2010湖北襄樊)为了扶持农民发展农业生产,国家对购买农机的农户给予农机售价13%的补贴.某市农机公司筹集到资金130万元,用于一次性购进A、B两种型号的收割机共30台.根据市场需求,这些收割机可以全部销售,全部销售后利润不少于15万元.其中,收割机的进价和售价见下表:

A型收割机

B型收割机

进价(万元/台)

5.33.6
售价(万元/台)

64
    设公司计划购进A型收割机x台,收割机全部销售后公司获得的利润为y万元.

    (1)试写出y与x的函数关系式;

    (2)市农机公司有哪几种购进收割机的方案可供选择?

    (3)选择哪种购进收割机的方案,农机公司获利最大?最大利润是多少?此种情况下,购买这30台收割机的所有农户获得的补贴总额W为多少万元?

3、(2010陕西西安)某蒜薹(tái)生产基地喜获丰收,收获蒜薹200吨,经市场调查,可采用批发、零售、冷库储藏后销售三种方式,并且按这三种方式销售,计划每吨平均的售价及成本如下表:

销售方式批发零售储藏后销售
售价(元/吨)

300045005500
成本(元/吨)

70010001200
若经过一段时间,蒜薹按计划全部售出获得的总利润为y(元),蒜薹零售x(吨),且零售量是批发量的

(1)求y与x之间的函数关系式;

(2)由于受条件,经冷库储藏售出的蒜薹最多80吨,求该生产基地按计划全部售完蒜薹获得的最大利润。

4、我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A,B两村运往两仓库的柑桔运输费用分别为yA元和yB元.

(1)请填写下表,并求出yA、yB与x之间的函数关系式;

CD总计
Ax吨

200吨

B300吨

总计240吨

260吨

500吨

(2)试讨论A,B两村中,哪个村的运费较少;

(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.

一次函数与二元一次方程的关系

1、(2007四川乐山)已知一次函数的图象如图(6)所示,当时,的取值范围是(  )

A.        B.        C.        D.

(第4题)

2、一次函数与的图象如图,则下列结论①;②;③当时,中,正确的个数是()

A.0        B.1        C.2        D.3

3、方程组的解是,则一次函数y=4x-1与y=2x+3的图象交点为。

4、如图,直线y=kx+b过点A(0《2),且与直线y=mx交于点P(1,m),则不等式组mx>kx+b>mx-2的解集是.

5、若点A(2,-3)、B(4,3)、C(5,a)在同一条直线上,则a的值是()

A、6或-6B、6C、-6D、6和3

6、直线:与直线:相交于点P(,2),则关于的不等式≥的解集为.

函数图像平行

1.在同一平面直角坐标系中,对于函数①y=-x-1,②y=x+1,③y=-x+1,④y=-2(x+1)的图象,下列说法正确的是()

A.通过点(-1,0)的是①③B.交点在y轴上的是②④

C.相互平行的是①③D.关于x轴对称的是②④

2、已知:一次函数y=(1-2m)x+m-2,问是否存在实数m,使

(1)经过原点

(2)y随x的增大而减小

(3)该函数图象经过第一、三、四象限

(4)与x轴交于正半轴

(5)平行于直线y=-3x-2

(6)经过点(-4,2)

3、已知点A(-1,-2)和点B(4,2),若点C的坐标为(1,m),问:当m为多少时,AC+BC有最小值?下载本文

显示全文
专题