视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
有限元网格划分注意事项
2025-09-27 11:31:17 责编:小OO
文档

有限元网格划分的基本原则
划分网格是建立有限元模型的一个重要环节,它要求考虑的题目较多,需要的工作量较大,所划分的网格形式对计算精度和计算规模将产生直接影响。为建立正确、公道的有限元模型,这里介绍划分网格时应考虑的一些基本原则。

1网格数目

网格数目的多少将影响计算结果的精度和计算规模的大小。一般来讲,网格数目增加,计算精度会有所进步,但同时计算规模也会增加,所以在确定网格数目时应权衡两个因数综合考虑。

图1中的曲线1表示结构中的位移随网格数目收敛的一般曲线,曲线2代表计算时间随网格数目的变化。可以看出,网格较少时增加网格数目可以使计算精度明显进步,而计算时间不会有大的增加。当网格数目增加到一定程度后,再继续增加网格时精度进步甚微,而计算时间却有大幅度增加。所以应留意增加网格的经济性。实际应用时可以比较两种网格划分的计算结果,假如两次计算结果相差较大,可以继续增加网格,相反则停止计算。 

图1位移精度和计算时间随网格数目的变化

在决定网格数目时应考虑分析数据的类型。在静力分析时,假如仅仅是计算结构的变形,网格数目可以少一些。假如需要计算应力,则在精度要求相同的情况下应取相对较多的网格。同样在响应计算中,计算应力响应所取的网格数应比计算位移响应多。在计算结构固有动力特性时,若仅仅是计算少数低阶模态,可以选择较少的网格,假如计算的模态阶次较高,则应选择较多的网格。在热分析中,结构内部的温度梯度不大,不需要大量的内部单元,这时可划分较少的网格。

2网格疏密

网格疏密是指在结构不同部位采用大小不同的网格,这是为了适应计算数据的分布特点。在计算数据变化梯度较大的部位(如应力集中处),为了较好地反映数据变化规律,需要采用比较密集的网格。而在计算数据变化梯度较小的部位,为减小模型规模,则应划分相对稀疏的网格。这样,整个结构便表现出疏密不同的网格划分形式。

图2是中心带圆孔方板的四分之一模型,其网格反映了疏密不同的划分原则。小圆孔四周存在应力集中,采用了比较密的网格。板的四周应力梯度较小,网格分得较稀。其中图b中网格疏密相差更大,它比图a中的网格少48个,但计算出的孔缘最大应力相差1%,而计算时间却减小了36%。由此可见,采用疏密不同的网格划分,既可以保持相当的计算精度,又可使网格数目减小。因此,网格数目应增加到结构的关键部位,在次要部位增加网格是不必要的,也是不经济的。 

图2带孔方板的四分之一模型

划分疏密不同的网格主要用于应力分析(包括静应力和动应力),而计算固有特性时则趋于采用较均匀的钢格形式。这是由于固有频率和振型主要取决于结构质量分布和刚度分布,不存在类似应力集中的现象,采用均匀网格可使结构刚度矩阵和质量矩阵的元素不致相差太大,可减小数值计算误差。同样,在结构温度场计算中也趋于采用均匀网格。

3单元阶次

很多单元都具有线性、二次和三次等形式,其中二次和三次形式的单元称为高阶单元。选用高阶单元可进步计算精度,由于高阶单元的曲线或曲面边界能够更好地逼近结构的曲线和曲面边界,且高次插值函数可更高精度地逼近复杂场函数,所以当结构外形不规则、应力分布或变形很复杂时可以选用高阶单元。但高阶单元的节点数较多,在网格数目相同的情况下由高阶单元组成的模型规模要大得多,因此在使用时应权衡考虑计算精度和时间。

图3是一悬臂梁分别用线性和二次三角形单元离散时,其顶端位移随网格数目的收敛情况。可以看出,但网格数目较少时,两种单元的计算精度相差很大,这时采用低阶单元是分歧适的。当网格数目较多时,两种单元的精度相差并不很大,这时采用高阶单元并不经济。例如在离散细节时,由于细节尺寸,要求细节四周的网格划分很密,这时采用线性单元更合适。 

图3不同阶次单元的收敛情况

增加网格数目和单元阶次都可以进步计算精度。因此在精度一定的情况下,用高阶单元离散结构时应选择适当的网格数目,太多的网格并不能明显进步计算精度,反而会使计算时间大大增加。为了兼顾计算精度和计算量,同一结构可以采用不同阶次的单元,即精度要求高的重要部位用高阶单元,精度要求低的次要部位用低阶单元。不同阶次单元之间或采用特殊的过渡单元连接,或采用多点约束等式连接。

4网格质量

网格质量是指网格几何外形的公道性。质量好坏将影响计算精度。质量太差的网格甚至会中止计算。直观上看,网格各边或各个内角相差不大、网格面不过分扭曲、边节点位于边界等份点四周的网格质量较好。网格质量可用细长比、锥度比、内角、翘曲量、拉伸值、边节点位置偏差等指标度量。

划分网格时一般要求网格质量能达到某些指标要求。在重点研究的结构关键部位,应保证划分高质量网格,即使是个别质量很差的网格也会引起很大的局部误差。而在结构次要部位,网格质量可适当降低。当模型中存在质量很差的网格(称为畸形网格)时,计算过程将无法进行。图4是三种常见的畸形网格,其中a单元的节点交叉编号,b单元的内角大于180°,c单元的两对节点重合,网格面积为零。 

图4几种常见的畸形网格

5网格分界面和分界点

结构中的一些特殊界面和特殊点应分为网格边界或节点以便定义材料特性、物理特性、载荷和位移约束条件。即应使网格形式满足边界条件特点,而不应让边界条件来适应网格。常见的特殊界面和特殊点有材料分界面、几何尺寸突变面、分布载荷分界线(点)、集中载荷作用点和位移约束作用点等。图5是具有上述几种界面的结构及其网格划分形式。 

图5特殊界面和特殊点网格划分

6位移协调性

位移协调是指单元上的力和力矩能够通过节点传递相邻单元。为保证位移协调,一个单元的节点必须同时也是相邻单元的节点,而不应是内点或边界点。相邻单元的共有节点具有相同的自由度性质。否则,单元之间须用多点约束等式或约束单元进行约束处理。图6是两种位移不协调的网格划分,图a中的节点1仅属于一个单元,变形后会产生材料裂缝或重叠。图b中的平面单元和梁单元节点的自由度性质不同,粱单元的力矩无法传递到平面单元。 

图6位移不协调的网格划分

7网格布局

当结构外形对称时,其网格也应划分对称网格,以使模型表现出相应的对称特性(如集中质矩阵对称)。不对称布局会引起一定误差,如在图7中,悬臂粱截面相对y轴对称,在对称载荷作用下,自由端两对称节点1、2的挠度值本应相等。但若分图b所示的不对称网格,计算出的y1=0.0346,y2=0.0350。若改用图c所示的网格,则y1和y2完全相同。 

图7网格布局对计算结果的影响

8节点和单元编号

节点和单元的编号影响结构总刚矩阵的带宽和波前数,因而影响计算时间和存储容量的大小,因此公道的编号有利于进步计算速度。但对复杂模型和自动分网而言,人为确定公道的编号很困难,目前很多有限元分析软件自带有优化器,网格划分后可进行带宽和波前优化,从而减轻人的劳动强度。

下载本文
显示全文
专题