视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
悬臂梁受力计算表格
2025-09-28 20:45:20 责编:小OO
文档
Simpl

e

Beam

--- (5)

Concentrat

ed Load At

Any Point

(Basing on

American Institute

1Input data:

Concentrated Load:P=0.85ton

Span:l= 5.00cm

Point's location:a=0.00cm

Point's location:b= 5.00cm

Moment of inertia for "Y" axis:I y= 1.14cm4

Section Modulus for "Y" axis:W y= 3.27cm3

Shearing Area for "Z"

axis:

A zz=28.00cm2

Modulus of Elasticity of

steel:

E=2141.10t/cm2

Yield Strength of steel:[s]= 2.35t/cm2 2Output data:

1)Reactions:

Reaction for "Z" axis: R =

P=0.85ton

2)Shearing Stress

Check:

Max. Shearing Force for "Z"

axis: F SF = P =0.85ton

Shearing Stress for "Z" axis:

t z = F SF / A zz =0.03

ton /cm2

< 0.4 [s] =0.94

t/cm2 Unity Check: UC = t z / 0.4

[s] ==0.03Okay!

3)Bending Stress Check:

Max. Bending Moment

Force for "Z" axis: M MAX

= P*b = 4.25ton*cm Prepareed by Reagin

Bending Stress for "Z" axis: s b = M MAX / W y =2

< 0.6 [s] = 1.41

t/cm2

Unity Check: UC = s b /

0.6 [s] =Okay!

4)Combined Stress

Check:

Combined Stress for "Z"

axis: s c = ( s2b + 3 * t2 )

1/2 =

2

< 0.6 [s] = 1.41

t/cm2

Unity Check: UC = s c /

0.6 [s] =Okay!

5)Deflection Check:

Max. Deflection for "Z"

axis: d z = P * b2 * ( 3 * l -

b ) / ( 6 * E * I )

< l / 200 =0.03cm

@ x = free end =Okay!

3Conclusion:

So the designed

structure's

stength is enough

for designed

loading!

Prepareed by Reagin下载本文

显示全文
专题