1.甲、乙两人拥有邮票张数的比是5:4,如果甲给乙5张邮票,则甲、乙两人邮票张数的比变成4:5.两人共有邮票 张.
2.(15分)一个棱长为6的正方体被切割成若干个棱长为整数的小正方体,若这些小正方体的表面积之和是切割前的大正方体的表面积的倍,求切割成小正方体中,棱长为1的小正方体的个数?
3.已知三个分数的和是,并且它们的分母相同,分子的比是2:3:4.那么,这三个分数中最大的是 .
4.若三个不同的质数的和是53,则这样的三个质数有 组.
5.被11除余7,被7除余5,并且不大于200的所有自然数的和是 .
6.在救灾捐款中,某公司有的人各捐200元,有的人各捐100元,其余人各捐50元.该公司人均捐款 元.
7.如图,圆P的直径OA是圆O的半径,OA⊥BC,OA=10,则阴影部分的面积是 .(π取3)
8.如图,一个直径为1厘米的圆绕边长为2厘米的正方形滚动一周后回到原来的位置.在这个过程中,圆面覆盖过的区域(阴影部分)的面积是 平方厘米.(π取3)
9.若一个十位数是99的倍数,则a+b= .
10.如图,已知AB=2,BG=3,GE=4,DE=5,△BCG和△EFG的面积和是24,△AGF和△CDG的面积和是51.那么,△ABC和△DEF的面积和是 .
11.如图所示的容器中放入底面相等并且高都是3分米的圆柱和圆锥形铁块,根据图1和图2的变化知,圆柱形铁块的体积是 立方分米.
12.从1,2,3,…,2016中任意取出n个数,若取出的数中至少有两个数互质,则n最小是 .
13.已知x是最简真分数,若它的分子加a,化简得;若它的分母加a,化简得,则x= .
14.a,b,c是三个互不相等的自然数,且a+b+c=48,那么a,b,c的乘积最大是 .
15.如图,由七巧板拼成的兔子图形中,兔子耳朵(阴影部分)的面积是10平方厘米,则兔子图形的面积是 平方厘米.
16.若(n是大于0的自然数),则满足题意的n的值最小是 .
17.如图,将1个大长方形分成了9个小长方形,其中位于角上的3个小长方形的面积分别为9,15和12,由第4个角上的小长方形的面积等于 .
18.如图,向装有水的圆柱形容器中放入三个半径都是1分米的小球,此时水面没过小球,且水面上升到容器高度的处,则圆柱形容器最多可以装水 188.4 立方分米.
19.(15分)如图,半径分别是15厘米、10厘米、5厘米的圆形齿轮A、B、C为某传动机械的一部分,A匀速转动后带动B匀速转动,而后带动C匀速转动,请问:
(1)当A匀速顺时针转动,C是顺时针转动还是逆时针转动?
(2)当A转动一圈时,C转动了几圈?
20.甲挖一条水渠,第一天挖了水渠总长度的,第二天挖了剩下水渠长度的,第三天挖了未挖水渠长度的,第四天挖完剩下的100米水渠.那么,这条水渠长 米.
21.如图.从楞长为10的立方体中挖去一个底面半径为2,高为10的圆柱体后,得到的几何体的表面积是 ,体积是 .(π取3)
22.定义新运算“*”:a*b=
例如3.5*2=3.5,1*1.2=1.2,7*7=1,则 = .
23.用底面内半径和高分别是12cm,20cm的空心圆锥和空心圆柱各一个组成如图所示竖放的容器,在这个容器内注入一些细沙,能填满圆锥,还能填部分圆柱,经测量,圆柱部分的沙子高5cm,若将这个容器倒立,则沙子的高度是 cm.
24.在一个两位数的中间加上小数点,得到一个小数,若这个小数与原来的两位数的和是86.9,则原来两位数是 .
25.有2013名学生参加数学竞赛,共有20道竞赛题,每个学生有基础分25分,此外,答对一题得3分,不答题得1分,答错一题扣1分,则所有参赛学生得分的总和是 数(填“奇”或“偶”).
26.若一个长方体,长是宽的2倍,宽是高的2倍,所有棱长之和是56,则此长方体的体积是 .
27.某小学的六年级有学生152人,从中选男生人数的和5名女生去参加演出,该年级剩下的男、女生人数恰好相等,则该小学的六年级共有男生 名.
28.有两辆火车,车长分别是125米和115米,车速分别是22米/秒和18米/秒,两车相向行驶,从两车车头相遇到车尾分开需要 秒.
29.根据图中的信息计算:鸡大婶和鸡大叔买的花束中,玫瑰、康乃馨、百合各多少枝?
30.从1开始的n个连续的自然数,如果去掉其中的一个数后,余下的各个数的平均数是,那么去掉的数是 .
31.如图,边长为12cm的正方形与直径为16cm的圆部分重叠(圆心是正方形的一个顶点),用S1,S2分别表示两块空白部分的面积,则S1﹣S2= cm2(圆周率π取3).
32.如图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是 .(填序号)
33.对任意两个数x,y,定义新的运算*为: (其中m是一个确定的数).如果,那么m= ,2*6= .
34.甲、乙两家商店出售同一款兔宝宝玩具,每只原售价都是25元,为了促销,甲店先提价10%,再降价20%;乙店则直接降价10%.那么,调价后对于这款兔宝宝玩具, 店的售价更便宜,便宜 元.
35.图中的三角形的个数是 .
36.若算式(□+121×3.125)÷121的值约等于3.38,则□中应填入的自然数是 .
37.认真观察图4中的三幅图,则第三幅图中的阴影部分应填的数字是 .
38.图中每一个圆的面积都是1平方厘米,则六瓣花形阴影部分的面积是 平方厘米.
39.王老师在黑板上写了若干个从1开始的连续自然数:1,2,3,4,…,然后擦去三个数(其中有两个质数),如果剩下的数的平均数是19,那么王老师在黑板上共写了 39 个数,擦去的两个质数的和最大是 .
40.老师让小明在400米的环形跑道上按照如下规律插上一些旗子做标记:从起点开始,沿着跑道每前进90米就插上一面旗子,直到下一个90米的地方已经插有旗子为止,则小明要准备 面旗子.
【参】
一、拓展提优试题
1.解:5÷()
=5
=45(张)
答:两人共有邮票 45张.
故答案为:45.
2.解:大正方体表面积:6×6×6=216,
体积是:6×6×6=216,
切割后小正方体表面积总和是:216×=720,
假设棱长为5的小正方体有1个,那么剩下的小正方体的棱长只能是1,个数是:(63﹣53)÷13=91(个),这时表面积总和是:52×6+12×6×91=696≠720,所以不可能有棱长为5的小正方体.
(1)同理,棱长为4的小正方体最多为1个,此时,不可能有棱长为3的小正方体,剩下的只能是切割成棱长为2的小正方体或棱长为1的小正方体,
设棱长为2的小正方体有a个,棱长为1的小正方体有b个,
则
解得:
(2)棱长为3的小正方体要少于(6÷3)×(6÷3)×(6÷3)=8个,
设棱长为2的小正方体有a个,棱长为1的小正方体有b个,棱长为3的小正方体有c个,
化简:
由上式可得:
b=9c+24,a=,
当c=0时,b24=,a=24,
当c=1时,b=33,a=19.5,(不合题意舍去)
当c=2时,b=42,a=15,
当c=3时,b=51,a=10.5,(不合题意舍去)
当c=4时,b=60,a=6,
当c=5时,b=69,a=28.5,(不合题意舍去)
当c=6时,b=78,a=﹣3,(不合题意舍去)
当c=7时,a=负数,(不合题意舍去)
所以,棱长为1的小正方体的个数只能是:56或24或42或60个.
答:棱长为1的小正方体的个数只能是:56或24或42或60个.
3.解:
=
=,
答:这三个分数中最大的一个是.
故答案为:.
4.解:53以内的质数有:2、3、5、7、11,13,17,19,23,29,31,37,41,43,47,51,53;
若三个不同的质数的和是53,可以有以下几组:
(1)3,7,43;(2)3,31,19;(3)3,37,13;(4)5,11,37;(5)5,7,41;
(6)5,17,31;(7)5,19,29;(8)7,17,29;(9)11,13,29;(10)11,23,19;
(11)13,17,23;
所以这样的三个质数有11组.
故答案为:11.
5.解:不大于200的所有自然数被11除余7的数是:18,29,40,62,73,84,95,106,117,128,139,150,161,172,183,194;
不大于200的所有自然数被7除余5的是:12,19,26,33,40,47,54,61,68,75…;
同时被11除余7,被7除余5的最小数是40,[11,7]=77,依次是117、194;
满足条件不大于200的所有自然数的和是:40+117+194=351.
故答案为:351.
6.解:捐50元人数的分率为:1﹣=,
(200×+100×+50×)÷1
=(20+75+7.5)÷1
=102.5(元)
答:该公司人均捐款102.5元.
故答案为:102.5.
7.解:3×102÷2﹣3×(10÷2)2
=3×100÷2﹣3×25
=150﹣75
=75
答:阴影部分的面积是75.
故答案为:75.
8.解:2×1×4+3×12
=8+3
=11(平方厘米)
答:阴影部分的面积是11平方厘米.
故答案为:11.
9.解:根据99的整除特性可知:
20+16++20+17=99.
.
a+b=8.
故答案为:8.
10.解:作CM⊥AD,垂足为M,作FN⊥AD,垂足为N,设CM=x,FN=y.
由题意得 方程组,解方程组得,
所以△ABC与△DEF的面积和是:
AB•CM+DE•FN=×2×8+×5×6=8+15=23.
故答案为:23.
11.解:25.7÷(1+1+3)
=25.7÷5
=5.14(立方分米)
5.14×3=15.42(立方分米)
答:圆柱形铁块的体积是15.42立方分米.
故答案为:15.42.
12.解:根据分析,1~2016数中,有奇数1008个,偶数1008个,因为偶数和偶数之间不能互质,故:
①n<1008时,有可能取的n个数都是偶数,就不能出现至少有两个数互质的情况;
②n=1008时,若取的数都是偶数,也不能出现至少有两个数互质的情况;
③n≥1009时,则取的n个数里至少有一个为奇数,取出的这个奇数和它相邻的偶数一定互质,
综上,n最小是1009.
故答案是:1009.
13.解:设原来的分数x是,则:
=
则:b=3(c+a)=3c+3a①
=
则:4c=a+b②
①代入②可得:
4c=a+3c+3a
4c=4a+3c
则:c=4a③
③代入①可得:
b=3c+3a=3×4a+3a=15a
所以==
即x=.
故答案为:.
14.解:48÷3=16,
16﹣1=15,
16+1=17,
所以,a,b,c的乘积最大是:15×16×17=4080.
故答案为:4080.
15.解:10=80(平方厘米)
答:兔子图形的面积是80平方厘米.
故答案为:80.
16.解:当n=1时,不等式左边等于,小于,不能满足题意;
当n=2时,不等式左边等于+==,小于,不能满足题意;
同理,当n=3时,不等式左边大于,能满足题意;
所以满足题意的n的值最小是3.
故答案是:3
17.解:如图,
设D的面积为x,
9:12=15:x
9x=12×15
x=
x=20
答:第4个角上的小长方形的面积等于20.
故答案为:20.
18.解:×3.14×13×3÷(﹣)
=12.56×15
=188.4(立方分米)
答:圆柱形容器最多可以装水188.4立方分米.
故答案为:188.4.
19.解:(1)如图,
答:当A匀速顺时针转动,C是顺时针转动.
(2)A:B:C=15:10:5=3:2:1
答:当A转动一圈时,C转动了3圈.
20.解:把这条水渠总长度看作单位“1”,则第一天挖的分率为,第二天挖的分率(1﹣)×=,第三天挖的分率为(1﹣)×=,
100÷((1﹣﹣﹣)
=100÷
=350(米)
答:这条水渠长350米.
故答案为:350.
21.解:10×10×6﹣3×22×2+2×3×2×10,
=600﹣24+120
=696;
10×10×10﹣3×22×10,
=1000﹣120
=880;
答:得到的几何体的表面积是696,体积是880.
故答案为:696,880.
22.解:根据分析可得,
,
=,
=2;
故答案为:2.
23.解:据分析可知,沙子的高度为:5+20÷3=11(厘米);
答:沙子的高度为11厘米.
故答案为:11.
24.解:根据题意可得:
86.9÷(10+1)=7.9;
7.9×10=79.
答:原来两位数是79.
故答案为:79.
25.解:每人答对x道,不答y道,答错z道题目,则显然x+y+z=20,z=20﹣x﹣y;
所以一个学生得分是:
25+3x+y﹣z,
=25+3x+y﹣(20﹣x﹣y),
=5+4x+2y;
4x+2y显然是个偶数,而5+4x+2y的和一定是个奇数;
2013个奇数相加的和仍是奇数.
所以所有参赛学生得分的总和是奇数.
故答案为:奇.
26.解:长方体的高是:
56÷4÷(1+2+4),
=14÷7,
=2,
宽是:2×2=4,
长是:4×2=8,
体积是:8×4×2=,
答:这个长方体的体积是.
故答案为:.
27.解:设男生有x人,
(1﹣)x=152﹣x﹣5,
x+x=147﹣x+x,
x=147,
x=77,
答:该小学的六年级共有男生77名.
故应填:77.
28.解:(125+115)÷(22+18)
=240÷40
=6(秒);
答:从两车头相遇到车尾分开需要6秒钟.
故答案为:6.
29.解:依题意可知:
玫瑰与康乃馨和百合的枝数化连比为:10:15:3;
购买一份比例的价格为:3×20+15×6+15×10=300;正好是1倍关系.
答:购买玫瑰10枝,康乃馨15枝,百合3枝.
30.解:设去掉的数是x,那么去掉一个数后的和是:
(1+n)n÷2﹣x=×(n﹣1);
显然,n﹣1是7的倍数;
n=8、15、22、29、36时,x均为负数,不符合题意.
n=43时,和为946,42×=912,946﹣912=34.
n=50时,和为1225,49×=10,1225﹣10=161>50,不符合题意.
答:去掉的数是34.
故答案为:34.
31.解:3×(16÷2)2﹣122
=192﹣144,
=48(平方厘米);
答:S1﹣S2=48cm2.
故答案为:48.
32.解:如图.
图1是一个正方体的展开图,图2的四个正方体中只有一个是和这个展开图对应的,这个正方体是图2①;
故答案为:①
33.解:(1)1*2==,
即2m+8=10,
2m=10﹣8,
2m=2,
m=1,
(2)2*6,
=,
=,
故答案为:1,.
34.解:甲商店:
25×(1+10%)×(1﹣20%),
=25×110%×80%,
=27.5×0.8,
=22(元);
乙商店:
25×(1﹣10%),
=25×90%,
=22.5(元);
22.5﹣22=0.5(元);
答:甲商店便宜,便宜了0.5元.
故答案为:甲,0.5.
35.解:根据题干分析可得:10+10+10+5=35(个),
答:一共有35个三角形.
故答案为:35.
36.解:令□=x,那么:
(x+121×3.125)÷121,
=(x+121×3.125)×,
=x+121×3.125×,
=x+3.125;
x+3.125≈3.38,
x≈0.255,
0.255×121=30.855;
x=30时,x=×30≈0.248;
x=31时,x=×31≈0.255;
当x=31时,运算的结果是3.38.
故答案为:31.
37.解:由每个图形的数字表示该图形所含曲边的数目可得:
第三幅图中的阴影部分含有5个曲边,
所以阴影部分应填的数字是5,
故答案为:5.
38.解:1×2=2(平方厘米);
答:六瓣花形阴影部分的面积是2平方厘米.
故答案为:2.
39.解:由剩下的数的平均数是19,
即得最大的数约为20×2=40个,
又知分母是9,所以剩下的数的个数必含因数9,则推得剩余36个数.
原写下了1到39这39个数;
剩余36个数的和:19×36=716,
39个数的总和:(1+39)×39÷2=780,
擦去的三个数总和:780﹣716=,
根据题意,推得擦去的三个数中最小是1,
那么两个质数和63=61+2能够成立,
61>39不合题意;
如果擦去的另一个数是最小的合数4,
﹣4=60
60=29+31=23+37,成立;
综上,擦去的两个质数的和最大是60.
故答案为:39,60.
40.解:400和90的最小公倍数是3600,
则3600÷90=40(面).
答:小明要准备40面旗子.
故答案为:40.下载本文