视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2013年宁夏回族自治区学习数据库摘要
2025-09-29 04:57:28 责编:小OO
文档
1、有一个带头结点的单链表,每个结点包括两个域,一个是整型域info,另一个是指向下一个结点的指针域next。假设单链表已建立,设计算法删除单链表中所有重复出现的结点,使得info域相等的结点只保留一个。

#include

typedef char datatype;

typedef struct node{

datatype data;

struct node * next;

} listnode;

typedef listnode* linklist;

/*--------------------------------------------*/

/* 删除单链表中重复的结点 */

/*--------------------------------------------*/

linklist deletelist(linklist head)

{ listnode *p,*s,*q;

p=head->next;

while(p)

{s=p;

q=p->next;

while(q)

if(q->data==p->data)

{s->next=q->next;free(q);

q=s->next;}

else

{ s=q; /*找与P结点值相同的结点*/

q=q->next;

}

p=p->next;

}

return head;

}

2、假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个简单有向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。(注:图中不存在顶点到自己的弧)

有向图判断回路要比无向图复杂。利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。下面用0,1,2表示这三种状态。前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶点v和u的回路。对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的下一邻接点的状态为1,就可以输出回路了。

void Print(int v,int start ) //输出从顶点start开始的回路。

{for(i=1;i<=n;i++)

if(g[v][i]!=0 && visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。

{printf(“%d”,v);

if(i==start) printf(“\

”); else Print(i,start);break;}//if

}//Print

void dfs(int v)

{visited[v]=1;

for(j=1;j<=n;j++ )

if (g[v][j]!=0) //存在边(v,j)

if (visited[j]!=1) {if (!visited[j]) dfs(j); }//if

else {cycle=1; Print(j,j);}

visited[v]=2;

}//dfs

void find_cycle() //判断是否有回路,有则输出邻接矩阵。visited数组为全局变量。

{for (i=1;i<=n;i++) visited[i]=0;

for (i=1;i<=n;i++ ) if (!visited[i]) dfs(i);

}//find_cycle

3、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x, 这情况下向j 小的方向继续查找;二是A[i,j]void search(datatype A[ ][ ], int a,b,c,d, datatype x)

//n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中.

{i=a; j=d; flag=0; //flag是成

功查到x的标志

while(i<=b && j>=c)

if(A[i][j]==x) {flag=1;break;}

else if (A[i][j]>x) j--; else i++;

if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型.

else printf(“矩阵A中无%d 元素”,x);

}算法search结束。

[算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x4、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。

当n=1时,只有一个根结点,由中序序列和后序序列可以确定这棵二叉树。

设当n=m-1时结论成立,现证明当n=m时结论成立。

设中序序列为S1,S2,…,Sm,后序序列是P1,P2,…,Pm。因后序序列最后一个元素Pm是根,则在中序序列中可找到与Pm相等的结点(设二叉树中各结点互不相同)Si(1≤i≤m),因中序序列是由中序遍历而得,所以Si是根结点,S1,S2,…,Si-1是左子树的中序序列,而Si+1,Si+2,…,Sm是右子树的中序序列。

若i=1,则S1是根,这时二叉树的左子树为空,右子树的结点数是m-1,则{S2,S3,…,Sm}和{P1,P2,…,Pm-1}可以唯一确定右子树,从而也确定了二叉树。

若i=m,则Sm是根,这时二叉树的右子树为空,左子树的结点数是m-1,则{S1,S2,…,Sm-1}和{P1,P2,…,Pm-1}唯一确定左子树,从而也确定了二叉树。

最后,当1可唯一确定二叉树的左子树,由{Si+1,Si+2,…,Sm}和

{Pi,Pi+1,…,Pm-1}可唯一确定二叉树的右子树 。

5、本题应使用深度优先遍历,从主调函数进入dfs(v)时 ,开始记数,若退出dfs()前,已访问完有向图的全部顶点(设为n个),则有向图有根,v为根结点。将n个顶点从1到n编号,各调用一次dfs()过程,就可以求出全部的根结点。题中有向图的邻接表存储结构、记顶点个数的变量、以及访问标记数组等均设计为全局变量。建立有向图g的邻接表存储结构参见上面第2题,这里只给出判断有向图是否有根的算法。

int num=0, visited[]=0 //num记访问顶点个数,访问数组visited初始化。

const n=用户定义的顶点数;

AdjList g ; //用邻接表作存储结构的有向图g。

void dfs(v)

{visited [v]=1; num++; //访问的顶点数+1

if (num==n) {printf(“%d是有向图的根。\

”,v); num=0;}//if

p=g[v].firstarc;

while (p)

{if (visied[p->ad

jvex]==0) dfs (p->adjvex);

p=p->next;} //while

visited[v]=0; num--; //恢复顶点v

}//dfs

void JudgeRoot()

//判断有向图是否有根,有根则输出之。

{static int i ;

for (i=1;i<=n;i++ ) //从每个顶点出发,调用dfs()各一次。

{num=0; visited[1..n]=0; dfs(i); }

 }// JudgeRoot

算法中打印根时,输出顶点在邻接表中的序号(下标),若要输出顶点信息,可使用g[i].vertex。

6、若第n件物品能放入背包,则问题变为能否再从n-1件物品中选出若干件放入背包(这时背包可放入物品的重量变为s-w[n])。若第n件物品不能放入背包,则考虑从n-1件物品选若干件放入背包(这时背包可放入物品仍为s)。若最终s=0,则有一解;否则,若s<0或虽然s>0但物品数n<1,则无解。

(1)s-w[n],n-1 //Knap(s-w[n],n-1)=true

(2)s,n-1 // Knap←Knap(s,n-1)

7、我们用l代表最长平台的长度,用k指示最长平台在数组b中的起始位置(下标)。用j记住局部平台的起始位置,用i指示扫描b数组的下标,i从0开始,依次和后续元素比较,若局部平台长度(i-j)大于l时,则修改最长平台的长度k(l=i-j)和其在b中的起始位置(k=j),直到b数组结束,l即为所求。

void Platform (int b[ ], int N)

//求具有N个元素的整型数组b中最长平台的长度。

{l=1;k=0;j=0;i=0;

while(i{while(iif(i-j+1>l) {l=i-j+1;k=j;} //局部最长平台

i++; j=i; } //新平台起点

printf(“最长平台长度%d,在b数组中起始下标为%d”,l,k);

}// Platform

8、设有一个数组中存放了一个无序的关键序列K1、K2、…、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。

51. 借助于快速排序的算法思想,在一组无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。

9、设t是给定的一棵二叉树,下面的递归程序count(t)用于求得:二叉树t中具有非空的左,右两个儿子的结点个数N2;只有非空左儿子的个数NL;只有非空右儿子的结点个数NR和叶子结点个数N0。N2、NL、NR、N0都是全局量,且在调用count(t)之前都置为0.

typedef struct node

{int data; struct node *lchild,*rchild;}node;

int N2,NL,NR,N0;

void count(node *t)

{if (t->lchild!=NULL) if (1)___ N2++; else NL++;

else if (2)___ NR++; else (3)__ ;

if(t->lchild!=NULL)(4)____; if (t->rchild!=NULL) (5)____;

}

26.树的先序非递归算法。

void example(b)

btree *b;

{ btree *stack[20], *p;

int top;

if (b!=null)

{ top=1; stack[top]=b;

while (top>0)

{ p=stack[top]; top--;

printf(“%d”,p->data);

if

(p->rchild!=null)

{(1)___; (2)___;

}

if (p->lchild!=null)

(3)___; (4)__;

}}}}

10、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x, 这情况下向j 小的方向继续查找;二是A[i,j]void search(datatype A[ ][ ], int a,b,c,d, datatype x)

//n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中.

{i=a; j=d; flag=0; //flag是成功查到x的标志

while(i<=b && j>=c)

if(A[i][j]==x) {flag=1;break;}

else if (A[i][j]>x) j--; else i++;

if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型.

else printf(“矩阵A中无%d 元素”,x);

}算法search结束。

[算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x11、二路插入排序是将待排关键字序列r[1..n]中关键字分二路分别按序插入到辅助向量d[1..n]前半部和后半部(注:向量d可视为循环表),其原则为,先将r[l]赋给d[1],再从r[2] 记录开始分二路插入。编写实现二路插入排序算法。

12、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。

void Translation(float *matrix,int n)

//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。

{int i,j,k,l;

float sum,min; //sum暂存各行元素之和

float *p, *pi, *pk;

for(i=0; i{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.

for (j=0; j*(p+i)=sum; //将一行元素之和存入一维数组.

}//for i

for(i=0; i{min=*(p+i); k=i; //初始设第i行元素之和最小.

for(j=i+1;jif(i!=k) //若最小行不是当前行,要进行交换(行元素及行元素之和)

{pk=matrix+n*k; //pk指向第k行第1个元素.

pi=matrix+n*i; //pi指向第i行第1个元素.

for(j=0;j{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}

sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元

素之和.

}//if

}//for i

free(p); //释放p数组.

}// Translation

[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).

13、设有一组初始记录关键字为(45,80,48,40,22,78),要求构造一棵二叉排序树并给出构造过程。

14、设有一个数组中存放了一个无序的关键序列K1、K2、…、Kn。现要求将Kn放在将元素排序后的正确位置上,试编写实现该功能的算法,要求比较关键字的次数不超过n。

51. 借助于快速排序的算法思想,在一组无序的记录中查找给定关键字值等于key的记录。设此组记录存放于数组r[l..h]中。若查找成功,则输出该记录在r数组中的位置及其值,否则显示“not find”信息。请编写出算法并简要说明算法思想。

15、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。

29. ① 试找出满足下列条件的二叉树

1)先序序列与后序序列相同 2)中序序列与后序序列相同

3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同

16、我们用l代表最长平台的长度,用k指示最长平台在数组b中的起始位置(下标)。用j记住局部平台的起始位置,用i指示扫描b数组的下标,i从0开始,依次和后续元素比较,若局部平台长度(i-j)大于l时,则修改最长平台的长度k(l=i-j)和其在b中的起始位置(k=j),直到b数组结束,l即为所求。

void Platform (int b[ ], int N)

//求具有N个元素的整型数组b中最长平台的长度。

{l=1;k=0;j=0;i=0;

while(i{while(iif(i-j+1>l) {l=i-j+1;k=j;} //局部最长平台

i++; j=i; } //新平台起点

printf(“最长平台长度%d,在b数组中起始下标为%d”,l,k);

}// Platform

17、4、void LinkList_reverse(Linklist &L)

//链表的就地逆置;为简化算法,假设表长大于2

{

p=L->next;q=p->next;s=q->next;p->next=NULL;

while(s->next)

{

q->next=p;p=q;

q=s;s=s->next; //把L的元素逐个插入新表表头

}

q->next=p;s->next=q;L->next=s;

}//LinkList_reverse

18、#define maxsize 栈空间容量

void InOutS(int s[maxsize])

//s是元素为整数的栈,本算法进行入栈和退栈操作。

{int top=0; //top为栈顶指针,定义top=0时为栈空。

for(i=1; i<=n; i++) //n个整数序列作处理。

{scanf(“%d”,&x); //从键盘读入整数序列。

if(x!=-1) // 读入的整数不等于-1时入栈。

if(top==maxsize-1){printf(“栈满\

”);exit(0);}

else s[++top]=x; //x入栈。

else //读入的

整数等于-1时退栈。

{if(top==0){printf(“栈空\

”);exit(0);}

else printf(“出栈元素是%d\

”,s[top--]);}

}

}//算法结

19、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x, 这情况下向j 小的方向继续查找;二是A[i,j]void search(datatype A[ ][ ], int a,b,c,d, datatype x)

//n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中.

{i=a; j=d; flag=0; //flag是成功查到x的标志

while(i<=b && j>=c)

if(A[i][j]==x) {flag=1;break;}

else if (A[i][j]>x) j--; else i++;

if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型.

else printf(“矩阵A中无%d 元素”,x);

}算法search结束。

[算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x20、请编写一个判别给定二叉树是否为二叉排序树的算法,设二叉树用llink-rlink法存储。

21、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。

typedef struct

{BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问

}stack;

stack s[],s1[];//栈,容量够大

BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。

{top=0; bt=ROOT;

while(bt!=null ||top>0)

{while(bt!=null && bt!=p && bt!=q) //结点入栈

{s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下

if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点

{for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存

if(bt==q) //找到q 结点。

for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配

{pp=s[i].t;

for (j=top1;j>0;j--)

if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);}

while(top!=0 && s[top].tag==1) top--; //退栈

if (top!=0){s[top].tag=1;bt=s

[top].t->rchild;} //沿右分枝向下遍历

}//结束while(bt!=null ||top>0)

return(null);//q、p无公共祖先

}//结束Ancestor

22、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。20分

void Hospital(AdjMatrix w,int n)

//在以邻接带权矩阵表示的n个村庄中,求医院建在何处,使离医院最远的村庄到医院的路径最短。

{for (k=1;k<=n;k++) //求任意两顶点间的最短路径

for (i=1;i<=n;i++)

for (j=1;j<=n;j++)

if (w[i][k]+w[k][j]m=MAXINT; //设定m为机器内最大整数。

for (i=1;i<=n;i++) //求最长路径中最短的一条。

{s=0;

for (j=1;j<=n;j++) //求从某村庄i(1<=i<=n)到其它村庄的最长路径。

if (w[i][j]>s) s=w[i][j];

if (s<=m) {m=s; k=i;}//在最长路径中,取最短的一条。m记最长路径,k记出发顶点的下标。

Printf(“医院应建在%d村庄,到医院距离为%d\

”,i,m);

}//for

}//算法结束

对以上实例模拟的过程略。各行中最大数依次是9,9,6,7,9,9。这几个最大数中最小者为6,故医院应建在第三个村庄中,离医院最远的村庄到医院的距离是6。

1、对图1所示的连通网G,请用Prim算法构造其最小生成树(每选取一条边画一个图)。

23、根据二叉排序树中序遍历所得结点值为增序的性质,在遍历中将当前遍历结点与其前驱结点值比较,即可得出结论,为此设全局指针变量pre(初值为null)和全局变量flag,初值为true。若非二叉排序树,则置flag为false。

#define true 1

#define false 0

typedef struct node

{datatype data; struct node *llink,*rlink;} *BTree;

void JudgeBST(BTree t,int flag)

// 判断二叉树是否是二叉排序树,本算法结束后,在调用程序中由flag得出结论。

{ if(t!=null && flag)

{ Judgebst(t->llink,flag);// 中序遍历左子树

if(pre==null)pre=t;// 中序遍历的第一个结点不必判断

else if(pre->datadata)pre=t;//前驱指针指向当前结点

else{flag=flase;} //不是完全二叉树

Judgebst (t->rlink,flag);// 中序遍历右子树

}//JudgeBST算法结束

24、由二叉树的前序遍历和中序遍历序列能确定唯一的一棵二叉树,下面程序的作用是实现由已知某二叉树的前序遍历和中序遍历序列,生成一棵用二叉链表表示的二叉树并打印出后序遍历序列,请写出程序所缺的语句。

#define MAX 100

typedef struct Node

{char info; struct Node *llink, *rlink; }TNODE;

char pred[MAX],inod[MAX];

main(int argc,int **argv)

{ TNODE *root;

if(argc<3) exit 0;

strcpy(pred,argv[1]); strcpy(inod,argv[2]);

root=restore(pred,inod,strlen(pred));

postorder(root);

}

TNODE *restore(char *ppos,char *ipos,int n)

{ TNODE *ptr; char *rpos; int k;

if(n<=0) return NULL;

ptr->info=(1)_______;

for((2)_______ ; rposk=(3)_______;

ptr->llink=restore(ppos+1, (4)_______,k );

ptr->rlink=restore ((5)_______+k,rpos+1,n-1-k);

return ptr;

}

postorder(TNODE*ptr)

{ if(ptr=NULL) return;

postorder(ptr->llink); postorder(ptr->rlink); printf(“%c”,ptr->info);

}

25、假设以I和O分别表示入栈和出栈操作。栈的初态和终态均为空,入栈和出栈的操作序列可表示为仅由I和O组成的序列,称可以操作的序列为合法序列,否则称为非法序列。(15分)

(1)A和D是合法序列,B和C 是非法序列。

(2)设被判定的操作序列已存入一维数组A中。

int Judge(char A[])

//判断字符数组A中的输入输出序列是否是合法序列。如是,返回true,否则返回false。

{i=0; //i为下标。

j=k=0; //j和k分别为I和字母O的的个数。

while(A[i]!=‘\\0’) //当未到字符数组尾就作。

{switch(A[i])

{case‘I’: j++; break; //入栈次数增1。

case‘O’: k++; if(k>j){printf(“序列非法\

”);exit(0);}

}

i++; //不论A[i]是‘I’或‘O’,指针i均后移。}

if(j!=k) {printf(“序列非法\

”);return(false);}

else {printf(“序列合法\

”);return(true);}

}//算法结束。

26、设一棵树T中边的集合为{(A,B),(A,C),(A,D),(B,E),(C,F),(C,G)},要求用孩子兄弟表示法(二叉链表)表示出该树的存储结构并将该树转化成对应的二叉树。

27、请编写一个判别给定二叉树是否为二叉排序树的算法,设二叉树用llink-rlink法存储。

28、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。(20分)

29、设有两个集合A和集合B,要求设计生成集合C=A∩B的算法,其中集合A、B和C用链式存储结构表示。

typedef struct node {int data; struct node *next;}lklist;

void intersection(lklist *ha,lklist *hb,lklist *&hc)

{

lklist *p,*q,*t;

for(p=ha,hc=0;p!=0;p=p->next)

{ for(q=hb;q!=0;q=q->next) if (q->data==p->data) break;

if(q!=0){ t=(lklist *)malloc(sizeof(lklist

)); t->data=p->data;t->next=hc; hc=t;}

}

}

30、题目中要求矩阵两行元素的平均值按递增顺序排序,由于每行元素个数相等,按平均值排列与按每行元素之和排列是一个意思。所以应先求出各行元素之和,放入一维数组中,然后选择一种排序方法,对该数组进行排序,注意在排序时若有元素移动,则与之相应的行中各元素也必须做相应变动。

void Translation(float *matrix,int n)

//本算法对n×n的矩阵matrix,通过行变换,使其各行元素的平均值按递增排列。

{int i,j,k,l;

float sum,min; //sum暂存各行元素之和

float *p, *pi, *pk;

for(i=0; i{sum=0.0; pk=matrix+i*n; //pk指向矩阵各行第1个元素.

for (j=0; j*(p+i)=sum; //将一行元素之和存入一维数组.

}//for i

for(i=0; i{min=*(p+i); k=i; //初始设第i行元素之和最小.

for(j=i+1;jif(i!=k) //若最小行不是当前行,要进行交换(行元素及行元素之和)

{pk=matrix+n*k; //pk指向第k行第1个元素.

pi=matrix+n*i; //pi指向第i行第1个元素.

for(j=0;j{sum=*(pk+j); *(pk+j)=*(pi+j); *(pi+j)=sum;}

sum=p[i]; p[i]=p[k]; p[k]=sum; //交换一维数组中元素之和.

}//if

}//for i

free(p); //释放p数组.

}// Translation

[算法分析] 算法中使用选择法排序,比较次数较多,但数据交换(移动)较少.若用其它排序方法,虽可减少比较次数,但数据移动会增多.算法时间复杂度为O(n2).

31、有一种简单的排序算法,叫做计数排序(count sorting)。这种排序算法对一个待排序的表(用数组表示)进行排序,并将排序结果存放到另一个新的表中。必须注意的是,表中所有待排序的关键码互不相同,计数排序算法针对表中的每个记录,扫描待排序的表一趟,统计表中有多少个记录的关键码比该记录的关键码小,假设针对某一个记录,统计出的计数值为c,那么,这个记录在新的有序表中的合适的存放位置即为c。

(1) (3分)给出适用于计数排序的数据表定义;

(2) (7分)使用Pascal或C语言编写实现计数排序的算法;

(3) (4分)对于有n个记录的表,关键码比较次数是多少?

(4) (3分)与简单选择排序相比较,这种方法是否更好?为什么?

32、设有一组初始记录关键字序列(K1,K2,…,Kn),要求设计一个算法能够在O(n)的时间复杂度内将线性表划分成两部分,其中左半部分的每个关键字均小于Ki,右半部分的每个关键字均大于等于Ki。

void quickpass(int r[], int s, int t)

{

int i=s, j=t, x=r[s];

while(iwhile (ix)

j=j-1; if (iwhile (i}

r[i]=x;

}

33、二部图(bipartite graph) G=(V,E)是一个能将其结点集V分为两不相交子集V 1和V2=V-V1的无向图,使得:V1中的任何两个结点在图G中均不相邻,V2中的任何结点在图G中也均不相邻。

(1).请各举一个结点个数为5的二部图和非二部图的例子。

(2).请用C或PASCAL编写一个函数BIPARTITE判断一个连通无向图G是否是二部图,并分析程序的时间复杂度。设G用二维数组A来表示,大小为n*n(n为结点个数)。请在程序中加必要的注释。若有必要可直接利用堆栈或队列操作。【

34、给出折半查找的递归算法,并给出算法时间复杂度性分析。

35、矩阵中元素按行和按列都已排序,要求查找时间复杂度为O(m+n),因此不能采用常规的二层循环的查找。可以先从右上角(i=a,j=d)元素与x比较,只有三种情况:一是A[i,j]>x, 这情况下向j 小的方向继续查找;二是A[i,j]void search(datatype A[ ][ ], int a,b,c,d, datatype x)

//n*m矩阵A,行下标从a到b,列下标从c到d,本算法查找x是否在矩阵A中.

{i=a; j=d; flag=0; //flag是成功查到x的标志

while(i<=b && j>=c)

if(A[i][j]==x) {flag=1;break;}

else if (A[i][j]>x) j--; else i++;

if(flag) printf(“A[%d][%d]=%d”,i,j,x); //假定x为整型.

else printf(“矩阵A中无%d 元素”,x);

}算法search结束。

[算法讨论]算法中查找x的路线从右上角开始,向下(当x>A[i,j])或向左(当x36、证明由二叉树的中序序列和后序序列,也可以唯一确定一棵二叉树。

29. ① 试找出满足下列条件的二叉树

1)先序序列与后序序列相同 2)中序序列与后序序列相同

3)先序序列与中序序列相同 4)中序序列与层次遍历序列相同

37、本题应使用深度优先遍历,从主调函数进入dfs(v)时 ,开始记数,若退出dfs()前,已访问完有向图的全部顶点(设为n个),则有向图有根,v为根结点。将n个顶点从1到n编号,各调用一次dfs()过程,就可以求出全部的根结点。题中有向图的邻接表存储结构、记顶点个数的变量、以及访问标记数组等均设计为全局变量。建立有向图g的邻接表存储结构参见上面第2题,这里只给出判断有向图是否有根的算法。

int num=0, visited[]=0 //num记访问顶点个数,访问数组visited初始化。

const n=用户定义的顶点数;

AdjList g ; //

用邻接表作存储结构的有向图g。

void dfs(v)

{visited [v]=1; num++; //访问的顶点数+1

if (num==n) {printf(“%d是有向图的根。\

”,v); num=0;}//if

p=g[v].firstarc;

while (p)

{if (visied[p->adjvex]==0) dfs (p->adjvex);

p=p->next;} //while

visited[v]=0; num--; //恢复顶点v

}//dfs

void JudgeRoot()

//判断有向图是否有根,有根则输出之。

{static int i ;

for (i=1;i<=n;i++ ) //从每个顶点出发,调用dfs()各一次。

{num=0; visited[1..n]=0; dfs(i); }

 }// JudgeRoot

算法中打印根时,输出顶点在邻接表中的序号(下标),若要输出顶点信息,可使用g[i].vertex。

38、约瑟夫环问题(Josephus问题)是指编号为1、2、…,n的n(n>0)个人按顺时针方向围坐成一圈,现从第s个人开始按顺时针方向报数,数到第m个人出列,然后从出列的下一个人重新开始报数,数到第m的人又出列,…,如此重复直到所有的人全部出列为止。现要求采用循环链表结构设计一个算法,模拟此过程。

#include

typedef int datatype;

typedef struct node

{datatype data;

struct node *next;

}listnode;

typedef listnode *linklist;

void jose(linklist head,int s,int m)

{linklist k1,pre,p;

int count=1;

pre=NULL;

k1=head; /*k1为报数的起点*/

while (count!=s) /*找初始报数起点*/

{pre=k1;

k1=k1->next;

count++;

}

while(k1->next!=k1) /*当循环链表中的结点个数大于1时*/

{ p=k1; /*从k1开始报数*/

count=1;

while (count!=m) /*连续数m个结点*/

{ pre=p;

p=p->next;

count++;

}

pre->next=p->next; /*输出该结点,并删除该结点*/

printf("%4d

图的顶点,这里设顶点信息就是顶点编号。

int f=0,r,visited[]; //f和r分别是队列的头尾指针,visited[]是访问数组

for (i=1;i<=n;i++) {visited[i]=0;s[i]=0;} //初始化,各顶点未确定属于那个集合

Q[1]=1; r=1; s[1]=1;//顶点1放入集合S1

while(f{v=Q[++f]; if (s[v]==1) jh=2; else jh=1;//准备v的邻接点的集合号

if (!visited[v])

{visited[v]=1; //确保对每一个顶点,都要检查与其邻接点不应在一个集合中

for (j=1,j<=n;j++)

if (g[v][j]==1){if (!s[j]) {s[j]=jh; Q[++r]=j;} //邻接点入队列

else if (s[j]==s[v]) return(0);} //非二部图

}//if (!visited[v])

}//while

return(1); }//是二部图

[算法讨论] 题目给的是连通无向图,若非连通,则算法要修改。

40、假设以邻接矩阵作为图的存储结构,编写算法判别在给定的有向图中是否存在一个简单有向回路,若存在,则以顶点序列的方式输出该回路(找到一条即可)。(注:图中不存在顶点到自己的弧)

有向图判断回路要比无向图复杂。利用深度优先遍历,将顶点分成三类:未访问;已访问但其邻接点未访问完;已访问且其邻接点已访问完。下面用0,1,2表示这三种状态。前面已提到,若dfs(v)结束前出现顶点u到v的回边,则图中必有包含顶点v和u的回路。对应程序中v的状态为1,而u是正访问的顶点,若我们找出u的下一邻接点的状态为1,就可以输出回路了。

void Print(int v,int start ) //输出从顶点start开始的回路。

{for(i=1;i<=n;i++)

if(g[v][i]!=0 && visited[i]==1 ) //若存在边(v,i),且顶点i的状态为1。

{printf(“%d”,v);

if(i==start) printf(“\

”); else Print(i,start);break;}//if

}//Print

void dfs(int v)

{visited[v]=1;

for(j=1;j<=n;j++ )

if (g[v][j]!=0) //存在边(v,j)

if (visited[j]!=1) {if (!visited[j]) dfs(j); }//if

else {cycle=1; Print(j,j);}

visited[v]=2;

}//dfs

void find_cycle() //判断是否有回路,有则输出邻接矩阵。visited数组为全局变量。

{for (i=1;i<=n;i++) visited[i]=0;

for (i=1;i<=n;i++ ) if (!visited[i]) dfs(i);

}//find_cycle

41、 二叉树的层次遍历序列的第一个结点是二叉树的根。实际上,层次遍历序列中的每个结点都是“局部根”。确定根后,到二叉树的中序序列中,查到该结点,该结点将二叉树分为“左根右”三部分。若左、右子树均有,则层次序列根结点的后面应是左右子树的根;若中序序列中只有左子树或只有右子树,则在层次序列的根结点后也只有左子树的根或右子树的根。这样,定义一个全局变量指针R,指向层次序列待处理元素。算法中先处理根结点,将根结点和左右子女的信息入队列。然后,在队列不空的条件下,循环处理二叉树的

点。队列中元素的数据结构定义如下:

typedef struct

{ int lvl; //层次序列指针,总是指向当前“根结点”在层次序列中的位置

int l,h; //中序序列的下上界

int f; //层次序列中当前“根结点”的双亲结点的指针

int lr; // 1—双亲的左子树 2—双亲的右子树

}qnode;

BiTree Creat(datatype in[],level[],int n)

//由二叉树的层次序列level[n]和中序序列in[n]生成二叉树。 n是二叉树的结点数

{if (n<1) {printf(“参数错误\

”); exit(0);}

qnode s,Q[]; //Q是元素为qnode类型的队列,容量足够大

init(Q); int R=0; //R是层次序列指针,指向当前待处理的结点

BiTree p=(BiTree)malloc(sizeof(BiNode)); //生成根结点

p->data=level[0]; p->lchild=null; p->rchild=null; //填写该结点数据

for (i=0; iif (in[i]==level[0]) break;

if (i==0) //根结点无左子树,遍历序列的1—n-1是右子树

{p->lchild=null;

s.lvl=++R; s.l=i+1; s.h=n-1; s.f=p; s.lr=2; enqueue(Q,s);

}

else if (i==n-1) //根结点无右子树,遍历序列的1—n-1是左子树

{p->rchild=null;

s.lvl=++R; s.l=1; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);

}

else //根结点有左子树和右子树

{s.lvl=++R; s.l=0; s.h=i-1; s.f=p; s.lr=1;enqueue(Q,s);//左子树有关信息入队列

s.lvl=++R; s.l=i+1;s.h=n-1;s.f=p; s.lr=2;enqueue(Q,s);//右子树有关信息入队列

}

while (!empty(Q)) //当队列不空,进行循环,构造二叉树的左右子树

{ s=delqueue(Q); father=s.f;

for (i=s.l; i<=s.h; i++)

if (in[i]==level[s.lvl]) break;

p=(bitreptr)malloc(sizeof(binode)); //申请结点空间

p->data=level[s.lvl]; p->lchild=null; p->rchild=null; //填写该结点数据

if (s.lr==1) father->lchild=p;

else father->rchild=p; //让双亲的子女指针指向该结点

if (i==s.l)

{p->lchild=null; //处理无左子女

s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s);

}

else if (i==s.h)

{p->rchild=null; //处理无右子女

s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);

}

else{s.lvl=++R; s.h=i-1; s.f=p; s.lr=1; enqueue(Q,s);//左子树有关信息入队列

s.lvl=++R; s.l=i+1; s.f=p; s.lr=2; enqueue(Q,s); //右子树有关信息入队列

}

}//结束while (!empty(Q))

return(p);

}//算法结束

42、给定n个村庄之间的交通图,若村庄i和j之间有道路,则将顶点i和j用边连接,边上的Wij表示这条道路的长度,现在要从这n个村庄中选择一个村庄建一所医院,问这所医院应建在哪个村庄,才能使离医院最远的村庄到医院的路程最短?试设计一个解答上述问题的算法,并应用该算法解答如图所示的实例。(20分)

43、设T是一棵满二叉树,编写一个将T的先序遍历序列转换为后

后序遍历序列的递归算法。

44、#define maxsize 栈空间容量

void InOutS(int s[maxsize])

//s是元素为整数的栈,本算法进行入栈和退栈操作。

{int top=0; //top为栈顶指针,定义top=0时为栈空。

for(i=1; i<=n; i++) //n个整数序列作处理。

{scanf(“%d”,&x); //从键盘读入整数序列。

if(x!=-1) // 读入的整数不等于-1时入栈。

if(top==maxsize-1){printf(“栈满\

”);exit(0);}

else s[++top]=x; //x入栈。

else //读入的整数等于-1时退栈。

{if(top==0){printf(“栈空\

”);exit(0);}

else printf(“出栈元素是%d\

”,s[top--]);}

}

}//算法结

45、若第n件物品能放入背包,则问题变为能否再从n-1件物品中选出若干件放入背包(这时背包可放入物品的重量变为s-w[n])。若第n件物品不能放入背包,则考虑从n-1件物品选若干件放入背包(这时背包可放入物品仍为s)。若最终s=0,则有一解;否则,若s<0或虽然s>0但物品数n<1,则无解。

(1)s-w[n],n-1 //Knap(s-w[n],n-1)=true

(2)s,n-1 // Knap←Knap(s,n-1)

46、我们可用“破圈法”求解带权连通无向图的一棵最小代价生成树。所谓“破圈法”就是“任取一圈,去掉圈上权最大的边”,反复执行这一步骤,直到没有圈为止。请给出用“破圈法”求解给定的带权连通无向图的一棵最小代价生成树的详细算法,并用程序实现你所给出的算法。注:圈就是回路。

47、#define maxsize 栈空间容量

void InOutS(int s[maxsize])

//s是元素为整数的栈,本算法进行入栈和退栈操作。

{int top=0; //top为栈顶指针,定义top=0时为栈空。

for(i=1; i<=n; i++) //n个整数序列作处理。

{scanf(“%d”,&x); //从键盘读入整数序列。

if(x!=-1) // 读入的整数不等于-1时入栈。

if(top==maxsize-1){printf(“栈满\

”);exit(0);}

else s[++top]=x; //x入栈。

else //读入的整数等于-1时退栈。

{if(top==0){printf(“栈空\

”);exit(0);}

else printf(“出栈元素是%d\

”,s[top--]);}

}

}//算法结

48、后序遍历最后访问根结点,即在递归算法中,根是压在栈底的。采用后序非递归算法,栈中存放二叉树结点的指针,当访问到某结点时,栈中所有元素均为该结点的祖先。本题要找p和q 的最近共同祖先结点r ,不失一般性,设p在q的左边。后序遍历必然先遍历到结点p,栈中元素均为p的祖先。将栈拷入另一辅助栈中。再继续遍历到结点q时,将栈中元素从栈顶开始逐

个到辅助栈中去匹配,第一个匹配(即相等)的元素就是结点p 和q的最近公共祖先。

typedef struct

{BiTree t;int tag;//tag=0 表示结点的左子女已被访问,tag=1表示结点的右子女已被访问

}stack;

stack s[],s1[];//栈,容量够大

BiTree Ancestor(BiTree ROOT,p,q,r)//求二叉树上结点p和q的最近的共同祖先结点r。

{top=0; bt=ROOT;

while(bt!=null ||top>0)

{while(bt!=null && bt!=p && bt!=q) //结点入栈

{s[++top].t=bt; s[top].tag=0; bt=bt->lchild;} //沿左分枝向下

if(bt==p) //不失一般性,假定p在q的左侧,遇结点p时,栈中元素均为p的祖先结点

{for(i=1;i<=top;i++) s1[i]=s[i]; top1=top; }//将栈s的元素转入辅助栈s1 保存

if(bt==q) //找到q 结点。

for(i=top;i>0;i--)//;将栈中元素的树结点到s1去匹配

{pp=s[i].t;

for (j=top1;j>0;j--)

if(s1[j].t==pp) {printf(“p 和q的最近共同的祖先已找到”);return (pp);}

while(top!=0 && s[top].tag==1) top--; //退栈

if (top!=0){s[top].tag=1;bt=s[top].t->rchild;} //沿右分枝向下遍历

}//结束while(bt!=null ||top>0)

return(null);//q、p无公共祖先

}//结束Ancestor

49、给出折半查找的递归算法,并给出算法时间复杂度性分析。

50、约瑟夫环问题(Josephus问题)是指编号为1、2、…,n的n(n>0)个人按顺时针方向围坐成一圈,现从第s个人开始按顺时针方向报数,数到第m个人出列,然后从出列的下一个人重新开始报数,数到第m的人又出列,…,如此重复直到所有的人全部出列为止。现要求采用循环链表结构设计一个算法,模拟此过程。

#include

typedef int datatype;

typedef struct node

{datatype data;

struct node *next;

}listnode;

typedef listnode *linklist;

void jose(linklist head,int s,int m)

{linklist k1,pre,p;

int count=1;

pre=NULL;

k1=head; /*k1为报数的起点*/

while (count!=s) /*找初始报数起点*/

{pre=k1;

k1=k1->next;

count++;

}

while(k1->next!=k1) /*当循环链表中的结点个数大于1时*/

{ p=k1; /*从k1开始报数*/

count=1;

while (count!=m) /*连续数m个结点*/

{ pre=p;

p=p->next;

count++;

}

pre->next=p->next; /*输出该结点,并删除该结点*/

printf("%4d

}

r->next=head; /*生成循环链表*/

jose(head,s,m); /*调用函数*/

}

}

51、设T是一棵满二叉树,编写一个将T的先序遍历序列转换为后序遍历序列的递归算法。下载本文

显示全文
专题