视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
小学数学奥数基础教程(六年级)--15
2025-09-28 00:36:50 责编:小OO
文档
小学数学奥数基础教程(六年级)

                                第15讲

本教程共30讲

棋盘的覆盖

  同学们会下棋吗?下棋就要有棋盘,下面是中国象棋的棋盘(图1),围棋棋盘(图2)和国际象棋棋盘(图3)。

  用某种形状的卡片,按一定要求将棋盘覆盖住,就是棋盘的覆盖问题。实际上,这里并不要求一定是某种棋盘,只要是有关覆盖若干行、若干列的方格网的问题,就是棋盘的覆盖问题。

  棋盘的覆盖问题可以分为两类:一是能不能覆盖的问题,二是有多少种不同的覆盖方法问题。

  例1 要不重叠地刚好覆盖住一个正方形,最少要用多少个右图所示的图形?

 

  分析与解:因为图形由3个小方格构成,所以要拼成的正方形内所含的小方格数应是3的倍数,从而正方形的边长应是3的倍数。经试验,不可能拼成边长为3的正方形。所以拼成的正方形的边长最少是6(见右图),需要用题目所示的图形

  36÷3= 12(个)。

  

 

  分析与解:在五年级学习“奇偶性”时已经讲过类似问题。左上图共有34个小方格,17个1×2的卡片也有34个小方格,好象能覆盖住。我们将左上图黑白相间染色,得到右上图。细心观察会发现,右上图中黑格有16个,白格有18个,而1×2的卡片每次只能盖住一个黑格与一个白格,所以17个1×2的卡片应当盖住黑、白格各17个,不可能盖住左上图。

  例3 下图的七种图形都是由4个相同的小方格组成的。现在要用这些图形拼成一个4×7的长方形(可以重复使用某些图形),那么,最多可以用上几种不同的图形?

 

  分析与解:先从简单的情形开始考虑。显然,只用1种图形是可以的,例如用7个(7);用2种图形也没问题,例如用1个(7),6个(1)。经试验,用6种图形也可以拼成4×7的长方形(见下图)。

 

  能否将7种图形都用上呢?7个图形共有4×7=28(个)小方格,从小方格的数量看,如果每种图形用1个,那么有可能拼成4×7的长方形。但事实上却拼不成。为了说明,我们将4×7的长方形黑、白相间染色(见右图),图中黑、白格各有14个。在7种图形中,除第(2)种外,每种图形都覆盖黑、白格各2个,共覆盖黑、白格各12个,还剩下黑、白格各2个。第(2)种图形只能覆盖3个黑格1个白格或3个白格1个黑格,因此不可能覆盖住另6种图形覆盖后剩下的2个黑格2个白格。

  综上所述,要拼成 4×7的长方形,最多能用上 6种图形。

  例4 用1×1,2×2,3×3的小正方形拼成一个11×11的大正方形,最少要用1×1的正方形多少个?

  分析与解:用3个2×2正方形和2个3×3正方形可以拼成1个5×6的长方形(见左下图)。用4个5×6的长方形和1 个 1×1的正方形可以拼成 1个11×11的大正形(见右下图)。

  上面说明用1个1×1的正方形和若干2×2,3×3的正方形可以拼成 11×11的大正方形。那么,不用1×1的正方形,只用2×2,3×3的正方形可以拼成11×11的正方形吗?

  将11×11的方格网每隔两行染黑一行(见下页右上图)。将2×2或3×3的正方形沿格线放置在任何位置,都将覆盖住偶数个白格,所以无论放置多少个2×2或3×3的正方形,覆盖住的白格数量总是偶数个。但是,右图中的白格有11×7=77(个),是奇数,矛盾。由此得到,不用1×1的正方形不可能拼成11×11的正方形。

  综上所述,要拼成11×11的正方形,至少要用1个1×1的小正方形。

  例5 用七个1×2的小长方形覆盖下图,共有多少种不同的覆盖方法?

 

  分析与解:盲目无章的试验,很难搞清楚。我们采用分类讨论的方法。

  如下图所示,盖住A所在的小格只有两种情况,其中左下图中①②两个小长方形只能如图覆盖,其余部分有4种覆盖方法:右下图中①②③三个小长方形只能如图覆盖,其余部分有3种覆盖方法。所以,共有7种不同覆盖方法。  

  例6 有许多边长为1厘米、2厘米、3厘米的正方形硬纸片。用这些硬纸片拼成一个长5厘米、宽3厘米的长方形的纸板,共有多少种不同的拼法?(通过旋转及翻转能相互得到的拼法认为是相同的拼法)

  解:有一个边长3厘米纸片有如下3种拼法:

  有两个边长2厘米纸片的有如下4种拼法:

  有一个边长2厘米及11个边长1厘米纸片的有2种拼法,边长全是1 厘米纸片的有1种拼法。

  共有不同的拼法3+4+2+1=10(种)。

  答:共有10种不同的拼法。

 

练习15

    

  在不重叠的情形下,不能再在正方形中多放一个这样的卡片?(要求卡片的边缘与格线重合)

 

  

  

  4.小明有8张连在一起的电影票(如右图),他自己要留下4张连在一起的票,其余的送给别人。他留下的四张票可以有多少种不同情况?

  5.有若干个边长为1、边长为2、边长为3的小正方形,从中选出一些拼成一个边长为4的大正方形,共有多少种不同拼法?(只要选择的各种小正方形的数目相同就算相同的拼法)

  

 

  7.能不能用9个1×4的长方形卡片拼成一个6×6的正方形?下载本文

显示全文
专题