视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
河南省2018年高考文科数学试题及答案汇总(word解析版)
2025-09-28 00:23:31 责编:小OO
文档
绝密★启用前

河南省2018年普通高等学校招生全国统一考试

文科数学

注意事项:

1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。

2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑。如需

改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上。

写在本试卷上无效。

3.考试结束后,将本试卷和答题卡一并交回。

一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知集合A={0,2},B={ -2,-1,0,1,2},则A∩B=

A. {0,2}

B. {1,2}

C. {0}

D. {-2,-1,0,1,2}

2,设z=,则∣z∣=

A. 0

B. 

C. 1

D. 

3.某地区经过一年的新农村建设,农村的经济收入增加了一倍,实现翻番,为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例,得到如下饼图:

则下面结论中不正确的是

A. 新农村建设后,种植收入减少

B. 新农村建设后,其他收入增加了一倍以上

C. 新农村建设后,养殖收入增加了一倍

D. 新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半

4.已知椭圆C:+ =1的一个焦点为(2,0),则C的离心率为

A. 

B. 

C. 

D. 

5.已知椭圆的上、下底面的中心分别为O₁,O₂,过直线的平面截该圆柱所得的截面是面积为8的正方形,则该圆柱的表面积为

A. 12π

B. 12π

C. 8π

D. 10π

6.设函数f(x)=x ³+(a-1)x ²+ax。若f(x)为奇函数,则曲线y= f(x)在点(0,0)处的切线方程为

A. y=-2x

B. y=-x

C. y=2x

D. y=x

7.在∆ABC中,AD为BC边上的中线,E为AD的中点,则=

A.  -

B. -

C. +

D. +

8.已知函数f(x)=2cos ²x-sin ²x+2,则

A. f(x)的最小正周期为π,最大值为3

B. 不f(x)的最小正周期为π,最大值为4

C. f(x)的最小正周期为2π,最大值为3

D. D. f(x)的最小正周期为2π,最大值为4

9.某圆柱的高为2,底面周长为16,其三视图如右图。圆柱表面上的点M在正视图上的对应点为A,圆柱表面上的点N在左视图上的对应点为B,则在此圆柱侧面上,从M到N的路径中,最短路径的长度为

A. 

B. 

C. 3

D. 2

10.在长方体ABCD-A₁B₁C₁D₁中,AB=BC=2,AC ₁与平面BB1C1C所成的角为30°,则该长方体的体积为

A. 8

B. 

C. 

D. 

11.已知角a的顶点为坐标原点,始边与x轴的非负半轴重合,终边上有两点A(1,a),B(2,b),且cos2a=,则=

A. 

B. 

C. 

D. 1

12.设函数f(x)=则满足f(x+1)< f(2x)的x的取值范围是

A. (-∞,-1]

B. (0,+∞)

C. (-1,0)

D. (-∞,0)

填空题 (本大题共4小题,每小题____分,共____分。

) 
13.已知函数f(x)= (x²+a),若f(3)=1,则a=____。

14.若x,y满足约束条件则z=3x+2y的最大值为____。

15.直线y=x+1与圆x²+y²+2y-3=0交于A,B两点,则∣AB∣=____。

16. △ABC的内角A,B,C的对边分别为a,b,c,已知bsinC+csinB=4asinBsinC,b²+c²-a²=8,则△ABC的面积为____。

简答题(综合题) (本大题共7小题,每小题____分,共____分。

) 
17.(12分)已知数列{}满足a₁=1,n =2(n+1),设。

(1)求b₁,b₂,b₃;

(2)判断数列{ }是否为等比数列,并说明理由。

(3)求{}的通项公式。

18.(12分)如图,在平行四边形ABCM中,AB=AC=3,∠ACM=90°,以AC为折痕将△ACM折起,使点M到达点D的位置,且AB⊥DA。

(1)证明:平面ACD⊥平面ABC;

(2)Q为线段AD上一点,P为线段BC上一点,且BP=DQ=DA,求三棱锥Q-ABP的体积。

19.(12分)某家庭记录了未使用节水龙头50天的日用水量数据(单位:m³)和使用了节水龙头50天的日用水量数据,得到频数分布表如下:

未使用节水龙头50天的日用水量频数分布表

使用了节水龙头50天的日用水量频数分布表

(1)     在答题卡上作出使用了节水龙头50天的日用水量数据的频率分布直方图;

(2)     估计该家庭使用节水龙头后,日用水量小于0.35 m³的概率;

(3)     估计该家庭使用节水龙头后,一年能节省多少水?(一年按365天计算,同一组中的数据以这组数据所在区间中点的值作代表)

20.(12分)

设抛物线C:y ²=2x,点A(2,0),B(-2,0),过点A的直线l与C交于M,N两点,

(1)当l与x轴垂直时,求直线BM的方程;

(2)证明:∠ABM=∠ABM。

21.(12分)

已知函数f(x)=aex--1。

(1)     设x=2是f(x)的极值点,求a,并求f(x)的单调区间;

(2)     证明:当时,f(x)≥0。

22.选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

[选修4-4:坐标系与参数方程](10分)

在直角坐标系xOy中,曲线C ₁的方程为y=k+2,以坐标原点为极点,x轴正半轴为极轴建立极坐标系,曲线C ₂的极坐标方程为p ²+2pcos θ-3=0。

(1)     求C₂的直角坐标方程;

(2)     若C₁与C₂有且仅有三个公共点,求C₁的方程。

23.选考题:共10分。请考生在第22、23题中任选一题作答。如果多做,则按所做的第一题计分。

[选修4-5:不等式选讲](10分)

已知f(x)=∣x+1∣-∣ax-1∣。

(1)当a=1时,求不等式f(x)>1的解集;

(2)若x∈(0,1)时不等式是f(x)>x成立,求a的取得范围。

答案

单选题 

1.  A 2.  C 3.  A 4.  C 5.  B 6.  D 7.  A 8.  B 9.  B 10.  C 11.  B 12.  D 

填空题 

13.  

-7

14.  

6

15.  

16.  

简答题 

17.  

18.  

19.  

20.  

21.  

22.  

23.  

解析

单选题 

略  略  略  略  略  略  略  略  略  略  略  略  

填空题 

略  略  略  略  

简答题 

略  略  略  略  略  略  略  下载本文

显示全文
专题