视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
复位电路工作原理
2025-09-28 00:17:42 责编:小OO
文档
复位电路工作原理

一、主板复位电路的工作原理:

复位电路(CPU的PG信号和复位信号都是由复位电路供给的):

主板上的所有复位信号都是由芯片组产生,其主要由南桥产生(内部有复位系统控制器),也就是说主板上所有的需要复位的设备和模块都由南桥来复位。南桥要想产生复位信号或者说南桥要想去复位其他的设备和模块,其首先要自身先复位或者说自身先有复位源。使南桥复位的或者说南桥的复位源是ATX电源的灰线(灰线常态为5V电平,工作后为恒定的5V,ATX电源的灰线也是PG信号),或者是系统电源管理芯片发出的PG信号常态。

ATX电源的灰线在电源的工作瞬间会有一个延时的过程。此延时的过程是相当于黄线和红线而言,延时的时间是100~500ms。也就是说灰线在ATX电源的工作瞬间会有一个低电平到高电平变化的过程。也就是0~1变化的电平信号。此瞬间变化的0~1电平信号会直接或者间接的作用于南桥内的复位系统控制器,首先让南桥本身先复位。当南桥复位后,南桥内部的复位系统控制器会把灰线5V信号进行分解处理,产生不同的复位信号,直接或者间接通过门电路或者电子开关发出。直接加入后级所有的设备或模块中,同时各设备和模块也被瞬间复位。CPU的复位信号由北桥产生,如果是电源管理器发出的PG信号,此信号在加电的瞬间也是一个0~1变化的跳变过程。此信号也会重复以上的动作,让南桥复位。南桥再发出其它复位信号(在笔记本电路中较为常用)。在某些主板上CPU的PG信号是由电源管理器的PG信号直接供给,还有的是由ATX电源的灰线间接供给,通常主板上的复位电路由RESET开关来控制,此复位开关一端为低电平一端为高电平,低电平通常接地,高电平由红线和灰线间接供给,通常为3.3V,此复位键的某一端也会直接或间接作用于南桥内的复位系统控制器,当微机需要强行复位时,瞬间短接复位开关。在开关的高电平端会产生一个低电平信号,此信号会直接或者间接作用于南桥内的复位系统控制器,使南桥强行复位之后,南桥也会强行去复位其它的设备和模块,这样就达到一个强行复位的过程,也就是常说的冷启动。

ISA总线的复位信号到南桥之间会有一个非们,跟随器或电子开关,常态时为低电平,复位时为高电平。IDE的复位和ISA总线正好相反,通常两者之间会有一个非门或是一个反向电子开关,也就是说IDE常态时为高电平,复位时为低电平,这里的高电平为5V或3.3V,低电平为0.5V以下的电位。

如果主板上没有ISA总线,也就是8XX系列芯片组的主板,IDE的复位直接来自于南桥,在两者之间通常也会有一个非门或是反向电子开关,PCI总线的复位直接来自于南桥,有些主板会在两者之间加有跟随器,此跟随器起缓冲延时作用。且PCI的常态为3.3V 或5V,复位时为0V,AGP总线的复位信号和PCI总线的复位信号是同路产生。也有的主板AGP总线的复位也是由南桥直接供给,常态时为高电平,复位时为低电平,对于北桥的复位信号也是和PCI总线的复位信号同路产生,也就是说PCI总线的复位信号,AGP总线的复位信号和北桥的复位信号通常是串在一根线上的,复位信号都相同,对于CPU的复位信号,不同的主板都是由北桥供给,I/O的复位信号是由南桥直接供给,通常是3.3V或5V。在8XX系列芯片组的主板中,固件中心(B205)和时钟发生器芯片也有复位信号,且复位信号由南桥直接供给,常态为3.3V,复位时为0V。

在华硕主板中,主板上所有的复位信号通常有一个单独的芯片产生,常见的型号是AS97127;此芯片受控于南桥芯片。

二、复位电路维修思路;

主板上的复位电路出现故障通常会造成整个主板都没有复位信号。维修此类故障应从RESET键和灰线入手,首先测量RESET键的一端有无3.3V的高电位,如果此高电位没有,应通过理电路,明确此高电位的来源,找出故障点排除即可,如果高电位有,再通过理电路,明确ATX电源灰线到南桥之间的电路是否有故障,通常灰线到南桥之间经过一些电阻、门电路或电子开关,不同的主板灰线到南桥之间的路径都不一样,在维修时还应通过理电路得出。如果发现有一元器件损坏应立即更换。如果确定灰线到南桥之间无问题和RESET键到南桥之间也无问题,应重点检查I/O,南桥和北桥,应通过切线法---排除,就是说理清PCI,AGP到北桥的复位线,把进北桥的复位线切断,通电测量,如果PCI点复位正常,说明故障点在北桥,如果故障依旧,说明故障在南桥和I/O 之间,再通过切线法进一步判断故障是在I/O还是在南桥,对于主板上某部分无复位信号,通常会引起主板不亮或者是主板不认某些设备,如CPU 无复位,而其他复位点都正常,则故障点在北桥,如果IDEO无复位,通常会造成主板亮而不认IDE接口设备,故障点通常在IDE到南桥之间的门电路或电子开关,门电路通常是非门比较多。I/O的复位信号通常是南桥直接发出,I/O没有复位信号也会造成主板不亮,在8XX系列芯片组中,固件中心的复位信号也是由南桥直接发出,如果此信号小时也会造成主板不亮,P4主板的SDR内存的四点时钟信号的来源与DDR内存可能相同。对于8XX系列芯片组的FWH(BIOS)固件中心的时钟信号是由时钟芯片供给,频率为33MHZ,电路中也有ABO电阻。

三、时钟电路的维修思路;

对于整块主板都没有时钟的故障,应首先检查时钟芯片的供电是否正常。对于SLOT1和Socket370得主板其供电为3.3V和2.5V两个。如果这两个电压同时消失,会造成整个主板都没有时钟。P4得主板其时钟芯片供电只有3.3V,若没有次供电,同样会造成整个主板都没有时钟。如果供电都正常,造成整个主板没有时钟可是14.318MHZ系统晶振损坏或时钟芯片本身损坏。应通过替换法一一排除。对于主板上某一处或某部分没时钟,在检修此故障是应首先明确时钟故障点到时钟芯片之间的电路不能有损坏,同时也要确定这部分的时钟芯片供电是否正常(ABO电阻不能变质开路高频滤波电容不能漏点或短路等),如果确定时钟点到时钟发生器(时钟芯片)之间的电路没有问题并且供电也正常,可能的原因是时钟芯片本身,可用替换法排除芯片是否损坏。对于CPU和内存的时钟,确定以上都正常,故障应在北桥。对于ISA总线地系统时钟 确定以上都正常,故障应在南桥。时钟发生器引脚直接连这点荣的通常是供电脚,而引脚连电阻的通常是时钟信号发出脚。

四、时钟电路检修;

时钟电路是否能正常工作,前提是供电一定要正常,才有可能正常工作。比较容易损坏的元器件由时钟芯片及周围Q1及L1等元件。3.3V如果是通过晶体管供电,此馆也易损坏。

五、总结;

有的主板有两个时钟芯片,其中没有晶振的是一个专门给内存的时钟提供,如果大部分时钟都正常,只有内存无时钟的情况下,大多数是此芯片损坏。下载本文

显示全文
专题