高等数学(乙)考试采用闭卷笔试形式,试卷满分为150分,考试时间为180分钟。
四、考试内容和考试要求
(一)函数、极限、连续
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、分段函数和隐函数 基本初等函数的性质及其图形
数列极限与函数极限的概念 无穷小和无穷大的概念及其关系 无穷小的性质及无穷小的比较 极限的四则运算 极限存在的单调有界准则和夹逼准则 两个重要极限:
,
函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质 函数的一致连续性概念
考试要求
1. 理解函数的概念,掌握函数的表示法,并会建立简单应用问题中的函数关系式。
2. 理解函数的有界性、单调性、周期性和奇偶性。掌握判断函数这些性质的方法。
3. 理解复合函数的概念,了解反函数及隐函数的概念。会求给定函数的复合函数和反函数。
4. 掌握基本初等函数的性质及其图形。
5. 理解极限的概念,理解函数左极限与右极限的概念,以及函数极限存在与左、右极限之间的关系。
6. 掌握极限的性质及四则运算法则,会运用它们进行一些基本的判断和计算。
7. 掌握极限存在的两个准则,并会利用它们求极限。掌握利用两个重要极限求极限的方法。
8. 理解无穷小、无穷大的概念,掌握无穷小的比较方法,会用等价无穷小求极限。
9. 理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型。
10. 掌握连续函数的运算性质和初等函数的连续性,熟悉闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理等),并会应用这些性质。
(二)一元函数微分学
考试内容
导数的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 基本初等函数的导数 导数的四则运算 复合函数、反函数、隐函数的导数的求法 参数方程所确定的函数的求导方法 高阶导数的概念 高阶导数的求法 微分的概念和微分的几何意义 函数可微与可导的关系 微分的运算法则及函数微分的求法 一阶微分形式的不变性 微分在近似计算中的应用 微分中值定理 洛必达(L’Hospital)法则 泰勒(Taylor)公式 函数的极值 函数最大值和最小值 函数单调性 函数图形的凹凸性、拐点及渐近线 函数图形的描绘
考试要求
1. 理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,掌握函数的可导性与连续性之间的关系。
2. 掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的求导公式。了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分。
3. 了解高阶导数的概念,会求简单函数的n阶导数。
4. 会求分段函数的一阶、二阶导数。
5. 会求隐函数和由参数方程所确定的函数的一阶、二阶导数
6. 会求反函数的导数。
7. 理解并会用罗尔定理、拉格朗日中值定理和泰勒定理。
8. 理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其简单应用。
9. 会用导数判断函数图形的凹凸性,会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形。
10. 掌握用洛必达法则求未定式极限的方法。
(三)一元函数积分学
考试内容
原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 变上限定积分定义的函数及其导数 牛顿-莱布尼茨(Newton-Leibniz)公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 广义积分(无穷限积分、瑕积分) 定积分的应用
考试要求
1. 理解原函数的概念,理解不定积分和定积分的概念。
2. 熟练掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理。掌握牛顿-莱布尼茨公式。掌握不定积分和定积分的换元积分法与分部积分法。
3. 会求有理函数、三角函数有理式和简单无理函数的积分。
4. 理解变上限定积分定义的函数,会求它的导数。
5. 理解广义积分(无穷限积分、瑕积分)的概念,掌握无穷限积分、瑕积分的收敛性判别法,会计算一些简单的广义积分。
6. 掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、截面面积为已知的立体体积、功、引力、压力)及函数的平均值。
(四)向量代数和空间解析几何
考试内容
向量的概念 向量的线性运算 向量的数量积、向量积和混合积 两向量垂直、平行的条件 两向量的夹角 向量的坐标表达式及其运算 单位向量 方向数与方向余弦 曲面方程和空间曲线方程的概念 平面方程、直线方程 平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件 点到平面和点到直线的距离 球面 母线平行于坐标轴的柱面 旋转轴为坐标轴的旋转曲面的方程 常用的二次曲面方程及其图形 空间曲线的参数方程和一般方程 空间曲线在坐标面上的投影曲线方程
考试要求
1. 熟悉空间直角坐标系,理解向量及其模的概念。
2. 熟悉向量的运算(线性运算、数量积、向量积),掌握两个向量垂直、平行的条件。
3. 理解方向数与方向余弦、向量的坐标表达式,会用坐标表达式进行向量的运算。
4. 熟悉平面方程和空间直线方程的各种形式,熟练掌握平面方程和空间直线方程的求法。
5. 会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等)解决有关问题。
6. 会求空间两点间的距离、点到直线的距离以及点到平面的距离。
7. 了解空间曲线方程和曲面方程的概念。
8. 了解空间曲线的参数方程和一般方程。了解空间曲线在坐标平面上的投影,并会求其方程。
9. 了解常用二次曲面的方程、图形及其截痕,会求以坐标轴为旋转轴的旋转曲面及母线平行于坐标轴的柱面方程。
(五)多元函数微分学
考试内容
多元函数的概念 二元函数的几何意义 二元函数的极限和连续 有界闭区域上多元连续函数的性质 多元函数偏导数和全微分的概念及求法 多元复合函数、隐函数的求导法 高阶偏导数的求法 空间曲线的切线和法平面 曲面的切平面和法线 方向导数和梯度 二元函数的泰勒公式 多元函数的极值和条件极值 拉格朗日乘数法 多元函数的最大值、最小值及其简单应用
考试要求
1. 理解多元函数的概念、理解二元函数的几何意义。
2. 理解二元函数的极限与连续性的概念及基本运算性质,了解有界闭区域上连续函数的性质,会判断二元函数在已知点处极限的存在性和连续性。
3. 理解多元函数偏导数和全微分的概念 了解二元函数可微、偏导数存在及连续的关系,会求偏导数和全微分。
4. 熟练掌握多元复合函数偏导数的求法。
5. 掌握隐函数的求导法则。
6. 理解方向导数与梯度的概念并掌握其计算方法。
7. 理解曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程。
8. 了解二元函数的二阶泰勒公式。
9. 理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值、最小值,并会解决一些简单的应用问题。
(六)多元函数积分学
考试内容
二重积分、三重积分的概念及性质 二重积分与三重积分的计算和应用 两类曲线积分的概念、性质及计算 两类曲线积分之间的关系 格林(Green)公式 平面曲线积分与路径无关的条件 已知全微分求原函数 两类曲面积分的概念、性质及计算 两类曲面积分之间的关系 高斯(Gauss)公式 斯托克斯(Stokes)公式 散度、旋度的概念及计算 曲线积分和曲面积分的应用
考试要求
1. 理解二重积分、三重积分的概念,掌握重积分的性质。
2. 熟练掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标),掌握二重积分的换元法。
3. 理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系。熟练掌握计算两类曲线积分的方法。
4. 熟练掌握格林公式,会利用它求曲线积分。掌握平面曲线积分与路径无关的条件。会求全微分的原函数。
5. 理解两类曲面积分的概念,了解两类曲面积分的性质及两类曲面积分的关系。熟练掌握计算两类曲面积分的方法。
6. 掌握高斯公式和斯托克斯公式,会利用它们计算曲面积分和曲线积分。
7. 了解散度、旋度的概念,并会计算。
8. 会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、曲面的面积、物体的体积、曲线的弧长、物体的质量、重心、转动惯量、引力、功及流量等)。
(七)无穷级数
考试内容
常数项级数及其收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域、和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 泰勒级数 初等函数的幂级数展开式 函数的幂级数展开式在近似计算中的应用 函数的傅里叶(Fourier)系数与傅里叶级数 狄利克雷(Dirichlet)定理 函数在[-l,l]上的傅里叶级数 函数在[0,l]上的正弦级数和余弦级数。
考试要求
1. 理解常数项级数的收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件
2. 掌握几何级数与p级数的收敛与发散情况。
3. 熟练掌握正项级数收敛性的各种判别法。
4. 熟练掌握交错级数的莱布尼茨判别法。
5. 理解任意项级数的绝对收敛与条件收敛的概念,以及绝对收敛与条件收敛的关系。
6. 了解函数项级数的收敛域及和函数的概念。
7. 理解幂级数的收敛域、收敛半径的概念,掌握幂级数的收敛半径及收敛域的求法。
8. 了解幂级数在其收敛区间内的一些基本性质(和函数的连续性、逐项微分和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和。
9. 了解函数展开为泰勒级数的充分必要条件。
10. 掌握一些常见函数如ex、sin x、cos x、ln(1+x)和(1+x)α等的麦克劳林展开式,会用它们将一些简单函数间接展开成幂级数。
11. 会利用函数的幂级数展开式进行近似计算。
12.了解傅里叶级数的概念和狄利克雷定理,会将定义在[-l,l]上的函数展开为傅里叶级数,会将定义在[0,l]上的函数展开为正弦级数与余弦级数。
(八)常微分方程
考试内容
常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli)方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降价的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 二阶常系数非齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 欧拉(Euler)方程 微分方程的简单应用
考试要求
1. 掌握微分方程及其阶、解、通解、初始条件和特解等概念。
2. 熟练掌握变量可分离的微分方程的解法,熟练掌握解一阶线性微分方程的常数变易法。
3. 会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程。
4. 会用降阶法解下列方程:y(n) =f(x),y″ =f(x,y′ )和y″ =f(y,y′ )
5. 理解线性微分方程解的性质及解的结构定理。
6. 掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程。
7. 会解自由项为多项式、指数函数、正弦函数、余弦函数、以及它们的和与积的二阶常系数非齐次线性微分方程。
8. 会解欧拉方程。
9. 用微分方程解决一些简单的应用问题。
五、主要参考文献
《高等数学》(上、下册),同济大学数学教研室主编,高等教育出版社,1996年第四版,以及其后的任何一个版本均可。
编制单位:中国科学院研究生院
编制日期:2011年7月1日
中科院研究生院硕士研究生入学考试
《固体物理》考试大纲
本《固体物理》考试大纲适用于中国科学院凝聚态物理及相关专业的硕士研究生入学考试。《固体物理》是研究固体的结构、组成粒子的相互作用以及运动规律的学科,是物理研究的一个重要组成部分,是许多学科专业的基础课程。本科目的考试内容包括晶体结构、晶格振动、能带理论和金属电子论等。要求考生深入理解其基本概念,有清楚的物理图象,能够熟练掌握基本的物理方法,并具有综合运用所学知识分析问题和解决问题的能力。
一、考试内容
(一)晶体结构
1、单晶、准晶和非晶的结构上的差别
2、晶体中原子的排列特点、晶面、晶列、对称性和点阵的基本类型
3、简单的晶体结构
4、倒易点阵和布里渊区
5、X射线衍射条件、基元的几何结构因子及原子形状因子
(二)固体的结合
1、固体结合的基本形式
2、分子晶体与离子晶体,范德瓦尔斯结合,马德隆常数
(三)晶体中的缺陷和扩散
1、晶体缺陷:线缺陷、面缺陷、点缺陷
2、扩散及微观机理
3、位错的物理特性
4、离子晶体中的点缺陷和离子性导电
(四)晶格振动与晶体的热学性质
1、一维链的振动:单原子链、双原子链、声学支、光学支、色散关系
2、格波、简正坐标、声子、声子振动态密度、长波近似
3、固体热容:爱因斯坦模型、德拜模型
4、非简谐效应:热膨胀、热传导
5、中子的非弹性散射测声子能谱
(五)能带理论
1、布洛赫定理
2、近自由电子模型
3、紧束缚近似
4、费密面、能态密度和能带的特点
(六)晶体中电子在电场和磁场中的运动
1、恒定电场作用下电子的运动
2、用能带论解释金属、半导体和绝缘体,以及空穴的概念
3、恒定磁场中电子的运动
4、回旋共振、德·哈斯-范·阿尔芬效应
(七)金属电子论
1、金属自由电子的模型和基态性质
2、金属自由电子的热性质
3、电子在外加电磁场中的运动、漂移速度方程、霍耳效应
二、考试要求
(一)晶体结构
1.理解单晶、准晶和非晶材料原子排列在结构上的差别
2.掌握原胞、基矢的概念,清楚晶面和晶向的表示,了解对称性和点阵的基本类型
3.了解简单的晶体结构
4.掌握倒易点阵和布里渊区的概念,能够熟练地求出倒格子矢量和布里渊区
5.了解X射线衍射条件、基元的几何结构因子及原子形状因子
(2)固体的结合
1.了解固体结合的几种基本形式
2.理解离子性结合、共价结合、金属性结合、范德瓦尔斯结合等概念
(3)晶体中的缺陷和扩散
1.掌握线缺陷、面缺陷、点缺陷的概念和基本的缺陷类型
2.了解扩散及微观机理
3.了解位错的物理特性
4.大致了解离子晶体中的点缺陷和离子性导电
(4)晶格振动与晶体的热学性质
a)熟练掌握并理解其物理过程,要求能灵活应用:一维链的振动(单原子链、双原子链)、声学支、光学支、色散关系
b)清楚掌握格波、简正坐标、声子、声子振动态密度、长波近似等概念
c)熟练掌握并理解其物理过程,要求能灵活应用:固体热容:爱因斯坦模型、德拜模型
d)了解非简谐效应:热膨胀、热传导
e)了解中子的非弹性散射测声子能谱
(5)能带理论
a)深刻理解布洛赫定理
b)熟练掌握并理解其物理过程,要求能灵活应用:近自由电子模型
c)熟练掌握并理解其物理过程,要求能灵活应用:紧束缚近似
d)深刻理解费密面、能态密度和能带的特点
(6)晶体中电子在电场和磁场中的运动
a)熟练掌握并理解其物理过程:恒定电场作用下电子的运动
b)能够用能带论解释金属、半导体和绝缘体,掌握空穴的概念
c)熟练掌握并理解其物理过程:恒定磁场中电子的运动
d)能够解释回旋共振、德·哈斯-范·阿尔芬效应
(7)金属电子论
a)熟练掌握金属自由电子的模型和基态性质
b)了解金属自由电子的热性质
c)熟练掌握并理解其物理过程:电子在外加电磁场中的运动、漂移速度方程、霍耳效应
三、主要参考书目
黄昆原著,韩汝琦改编,《固体物理学》高等教育出版社,1988年10月
编制单位:中国科学院研究生院
编制日期:2011年7月1日
中科院研究生院硕士研究生入学考试
《普通物理(乙)》考试大纲
本《普通物理(乙)》考试大纲适用于中国科学院研究生院工科类的硕士研究生入学考试。普通物理是大部分专业设定的一门重要基础理论课,要求考生对其中的基本概念有深入的理解,系统掌握物理学的基本定理和分析方法,具有综合运用所学知识分析问题和解决问题的能力。
一.考试内容:
大学工科类专业的《大学物理》或《普通物理》课程的基本内容,包含力学、电学、光学、原子物理、热学等。
二.考试要求:
(一) 力学
1. 质点运动学:
熟练掌握和灵活运用:矢径;参考系;运动方程;瞬时速度;瞬时加速度;切向加速度;法向加速度;圆周运动;运动的相对性。
2.质点动力学:
熟练掌握和灵活运用:惯性参照系;牛顿运动定律;功;功率;质点的动能;弹性势能;重力势能;保守力;功能原理;机械能守恒与转化定律;动量、冲量、动量定理;动量守恒定律。
3.刚体的转动:
熟练掌握和灵活运用:角速度矢量;质心;转动惯量;转动动能;转动定律;力矩;力矩的功;定轴转动中的转动动能定律;角动量和冲量矩;角动量定理;角动量守恒定律。
4.简谐振动和波:
熟练掌握和灵活运用:运动学特征(位移、速度、加速度,简谐振动过程中的振幅、角频率、频率、位相、初位相、相位差、同相和反相);动力学分析;振动方程;旋转矢量表示法;谐振动的能量;谐振动的合成;波的产生与传播;波的能量、能流密度;波的叠加与干涉;驻波;多普勒效应。
5.狭义相对论基础:
理解并掌握:伽利略变换;经典力学的时空观;狭义相对论的相对性原理;光速不变原理;洛仑兹变换;同时性的相对性;狭义相对论的时空观;狭义相对论的动力学基础。
(二) 电磁学
1.静电场:
熟练掌握和灵活运用:库仑定律,静电场的电场强度及电势,场强与电势的叠加原理。理解并掌握:高斯定理,环路定理,静电场中导体及电介质问题,电容、静电场能量。
2.稳恒电流的磁场:
熟练掌握和灵活运用:磁感应强度矢量,磁场的叠加原理,毕奥—萨伐尔定律及应用,磁场的高斯定理、安培环路定理及应用。理解并掌握:磁场对载流导体的作用,安培定律。运动电荷的磁场、洛仑兹力。了解:磁介质, 介质的磁化问题,基本实验。
3.电磁感应:
熟练掌握和灵活运用:法拉第电磁感应定律,楞次定律,动生电动势。 理解并掌握:自感、互感、自感磁能,互感磁能,磁场能量。
4.直流与交流电路:
熟练掌握和灵活运用:基本概念和定义。理解并掌握:复杂交直流电路的解法。
5.电磁场理论与电磁波:
熟练掌握和灵活运用:位移电流,麦克斯韦方程组。理解并掌握:电磁波的产生与传播,电磁波的基本性质,电磁波的能流密度。
6.电磁学单位制:
熟练掌握电磁学国际单位制。
(三)光学
1.光波场的描述:
能写出各种光波的波函数;能正确表述光波的各种偏振状态。
2. 光的干涉:
正确理解波的叠加原理和相干光的含义;理解各种典型干涉装置(杨氏实验、尖劈、牛顿环、迈克尔孙干涉仪、法布里-珀涉仪、干涉滤光片)的工作原理;能解释各种典型干涉装置产生的干涉图样的特点;了解上述装置干涉场中的光强分布。
3. 光的衍射:
正确理解产生光的衍射现象的机理;掌握处理衍射问题的基本原理;能灵活运用半波带法解释几种典型装置(夫琅禾费单缝、圆孔衍射,夫琅禾费多缝衍射,菲涅耳圆孔和圆屏衍射)的衍射现象;了解上述装置衍射场中的光强分布问题。
4. 光的偏振:
掌握线偏振光的获得与检验;理解各种偏振光器件(偏振片、波片)的工作原理;能熟练运用各种偏振光器件产生和检验偏振光;能熟练运用马吕公式求解问题;了解反射和折射光的偏振;了解光在各向异性介质中的传播:能正确描述和解释双折射现象。
(四) 原子物理
1.原子的量子态与精细结构:
理解并掌握:α粒子散射实验和卢瑟福原子模型。熟练掌握和灵活运用: 氢原子和类氢离子的光谱,玻尔的氢原子理论,夫兰克-赫兹实验与原子能级,原子中电子轨道运动的磁矩,史特恩-盖拉赫实验,电子自旋的假设,碱金属原子的光谱,原子实的极化和轨道贯穿,碱金属原子光谱的精细结构,电子自旋同轨道运动的相互作用,单电子辐射跃迁的选择定则,氢原子光谱的精细结构。
2.多电子原子:
熟练掌握和灵活运用: 氦的光谱和能级,具有两个价电子的原子态,泡利原理与同科电子,辐射跃迁的普用选择定则;元素性质的周期性变化,原子的电子壳层结构,原子基态的电子组态。
3.在磁场中原子:
熟练掌握和灵活运用: 原子的磁矩,外磁场对原子的作用,塞曼效应。
(五)热学
1.气体分子运动论:
理解并掌握:理想气体状态方程,理想气体的压强公式,麦克斯韦速率分布律,玻耳兹曼分布律,能量按自由度均分定理,气体的输运过程。
2.热力学:
理解:热力学第一定律,热力学第一定律的应用,循环过程、卡诺循环,热力学第二定律;了解低温物理现象。
三. 主要参考教材:
全国重点大学工科类普通物理教材
编制单位:中国科学院研究生院
编制日期:2011年7月1日
中科院研究生院硕士研究生入学考试
《普通化学(乙)》考试大纲
本《普通化学》(乙)考试大纲适用于报考中国科学院研究生院非化学、化工类专业的硕士研究生入学考试。普通化学对化学作一概括的阐述和研讨。主要介绍化学的基本概念和方法,主要内容有:气体和液体的基本定律、化学热力学和化学反应方向、化学平衡、化学动力学和反应速率方程、原子结构和量子论的若干推论、分子结构和理论、晶体结构、配位化合物和元素化学。要求考生了解各种基本概念,理解、掌握各种基本理论和应用,并具有综合运用所学知识分析问题和解决问题的能力。
一、考试内容
(一) 热化学与能源
1. 热力学基本概念(如状态函数、热力学标准态、反应进度、焓等)
2. 定容热效应(qv)的测量原理和实验计算方法。
3. 热化学定律及其应用
4. 反应的标准摩尔焓变的近似计算;
5. 能源的概况和我国能源的特征,及可持续发展战略。
(二) 化学反应的基本原理与大气污染
1. 熵变及吉布斯函数变的意义,化学反应 rGm 的近似计算,反应进行的方向的判别。
2. rGm 与K 的关系及有关计算,浓度、压力和温度对化学平衡的影响
3. 浓度、温度与反应速率的定量关系。
4. 元反应和反应级数的概念。
5. 阿仑尼乌斯公式及其相关计算。
6. 活化能和活化分子的概念,浓度、温度、催化剂对化学反应速率的影响。
7. 链反应与光化学反应的一般概念
8. 大气的主要污染物,温室效应、臭氧层空洞、酸雨及光化学烟雾等综合性大气污染及其控制。
9. 清洁生产和绿色化学的概念
(三) 水化学与水污染
1. 溶液的通性
2. 酸碱的近代概念,酸碱的解离平衡和缓冲溶液的概念
3. 有关pH值的计算;了解配离子的解离平衡及其移动
4. 沉淀与溶解平衡
5. 溶度积规则及其有关计算
6. 胶体的聚沉、保护及表面活性剂的结构和应用
7. 水体的主要污染物的来源及其危害。
(四) 电化学与金属腐蚀
1. 原电池的组成、半反应式以及电极电势的概念
2. 能斯特方程
3. 电极电势和原电池电动势的计算
4. 浓度对电极电势的影响以及电极电势的应用:比较氧化剂还原剂的相对强弱,判断氧化还原反应进行的方向和程度
5. 电解池中电解产物一般规律
6.电化学腐蚀及其防止原理
(五) 物质结构基础
1.原子核外电子运动的基本特征
2. 量子数的取值规律
3. 原子轨道和电子云的空间分布
4. 核外电子排布的一般规律及其与元素周期表的关系
5. 化学键的本质及键参数的意义
6. 分子间作用力以及晶体结构与物质物理性质的关系
(六) 元素化学与无机材料
1. 单质和某些化合物的熔点、硬度以及导电性等物理性质的一般规律
2. 单质氧化还原性的一般规律
3. 化合物的氧化还原性和酸碱性等化学性质的一般规律
4. 配合物的组成、命名
5. 配合物价键理论的基本要点以及配合物的某些应用
6.重要金属、金属材料、无机非金属材料及纳米材料的特性及应用
(七) 高分子化合物与材料
1. 高分子化合物的基本概念、命名和分类
2. 高分子化合物的基本结构与重要特性
3. 高分子化合物的合成反应及改性、回收再利用的方法
4. 几种重要高分子材料和复合材料的性能及其应用。
(八)生命物质与人体健康
1. 氨基酸、蛋白质、酶的结构和特性
2. 核糖核酸、脱氧核糖核酸的组成与结构,DNA复制机制与基因表达
3. 生命科学中的基因突变、DNA重组技术、基因工程、中心法则等近代新概念4. 一些对人类危害较大的疾病的防治方法及人们在治疗癌症、心血管病、爱滋病等中的一些新方法、新技术
5. 生命元素的主要生理功能及其与人体健康的关系,平衡膳食的组成及毒品种类。
二、考试要求
(一)气体、液体和溶液
了解若干热力学基本概念(如状态函数、热力学标准态、反应进度、焓等)和定容热效应q的测定;理解热化学定律及其应用;理解等压热效应与反应焓变的关系、等容热效应与热力学能变的关系;掌握反应的标准摩尔焓变的近似计算;了解能源的概况和我国能源的特征,及可持续发展战略。
(二) 化学反应的基本原理与大气污染
了解熵变及吉布斯函数变的意义,掌握化学反应 rGm 的近似计算,能应用 rGm 判断反应进行的方向;掌握 rGm 与K 的关系及有关计算,理解浓度、压力和温度对化学平衡的影响;了解浓度、温度与反应速率的定量关系。了解元反应和反应级数的概念;能用阿仑尼乌斯公式进行初步计算。能用活化能和活化分子的概念,说明浓度、温度、催化剂对化学反应速率的影响;了解链反应与光化学反应的一般概念;了解大气的主要污染物,温室效应、臭氧层空洞、酸雨及光化学烟雾等综合性大气污染及其控制。了解清洁生产和绿色化学的概念。
(三)水化学与水污染
了解溶液的通性;明确酸碱的近代概念,酸碱的解离平衡和缓冲溶液的概念,
掌握有关pH值的计算;了解配离子的解离平衡及其移动; 掌握沉淀与溶解平衡、溶度积规则及其有关计算;了解胶体的聚沉、保护及表面活性剂的结构和应用;了解水体的主要污染物的来源及其危害。
(四) 电化学与金属腐蚀
了解原电池的组成、半反应式以及电极电势的概念。能用能斯特方程计算电极电势和原电池电动势。熟悉浓度对电极电势的影响以及电极电势的应用:能比较氧化剂还原剂的相对强弱,判断氧化还原反应进行的方向和程度。了解电解池中电解产物一般规律,明确电化学腐蚀及其防止的原理。
(五) 物质结构基础
了解原子核外电子运动的基本特征,明确量子数的取值规律,了解原子轨道和电子云的空间分布;掌握核外电子排布的一般规律及其与元素周期表的关系;了解化学键的本质及键参数的意义;了解分子间作用力以及晶体结构与物质物理性质的关系。
(六) 元素化学与无机材料
联系物质结构基础知识,了解单质和某些化合物的熔点、硬度以及导电性等物理性质的一般规律;联系化学热力学基础知识,了解单质氧化还原性的一般规律;联系周期系和电极电势,明确某些化合物的氧化还原性和酸碱性等化学性质的一般规律;了解配合物的组成、命名。了解配合物价键理论的基本要点以及配合物的某些应用;了解重要金属、金属材料、无机非金属材料及纳米材料的特性及应用。
(七) 高分子化合物与材料
了解高分子化合物的基本概念、命名和分类;了解高分子化合物的基本结构与重要特性;了解高分子化合物的合成反应及改性、回收再利用的方法;了解几种重要高分子材料和复合材料的性能及其应用。
(八)生命物质与人体健康
了解氨基酸、蛋白质、酶的结构和特性;了解核糖核酸、脱氧核糖核酸的组成与结构,DNA复制机制与基因表达;了解生命科学中的基因突变、DNA重组技术、基因工程、中心法则等近代新概念;了解一些对人类危害较大的疾病的防治方法及人们在治疗癌症、心血管病、爱滋病等中的一些新方法、新技术;了解生命元素的主要生理功能及其与人体健康的关系,平衡膳食的组成及毒品种类。
主要参考书目:
1.浙江大学普通化学教研组编《普通化学》第五版,高等教育出版社,2003年。
2.华彤文、陈景祖等编《普通化学原理》第三版,北京大学出版社,2005年。
编制单位:中国科学院研究生院
编制日期:2011年7月1日下载本文