视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
系列风电机组事故分析及防范措施(二)——因顺桨控制故障引发的飞车事故
2025-09-30 01:33:54 责编:小OO
文档
系列风电机组事故分析及防范措施(二)——因顺桨控制故障引发的飞车事故

国内外都发生过风电机组倒塌、烧毁等重大事故。事故发生后,若能对这些事故进行认真分析、总结,找出事发时的真实原因,并采取有效的预防措施,就能尽量避免类似事故的再次发生。就机组飞车事故而言,其预防措施应建立在准确分析、抓住重点、讲求科学的基础上,并综合考虑各种因素使度电成本最低。下面就具体事例进行阐述和分析。

三桨叶同时不能顺桨引发的飞车事故

下面事例都是因三支叶片同时不能顺桨而引发的机组失控、飞车事故。事故机组均使用的是电池为后备电源的直流变桨系统,采用的同一厂家生产的同一型号主控。从多年众多同类型机组的维修来看,事故机组的主控、变桨、变频等主要部件的质量较优,未发现轮毂后备电池及其他关键部件存在设计或质量问题。

一、某风电场机组的烧毁、倒塌事故

某风电场监控人员发现,事故机组报发电机超速,在短暂的停机后,机组又再次不明原因迅速启机。事故机组飞车后,机舱全部烧毁,主控数据无法获取。从现场人员及现场勘察了解到,事发时风速约为10m/s,事发后三支叶片都在零度位置,均未顺桨。

因能得到的有用信息较少,事故分析具有一定的困难。然而,在事发过程中却留下了诸如“再次迅速启机”等特殊现象。通过剖析这些现象,并给出合理解释,或许能找到事故发生的确切原因。

二、某风电场的机组飞车事故

某风电场,在中控室发现事故机组通讯中断,到达现场后,叶片已回到92°限位开关位置。上机舱,如图1、图2 所示,主轴刹车片已完全磨损,刹车盘严重磨损,两边均有较深的磨痕,刹车器保护罩已部分烧熔,且严重变形;发电机侧的柔性连接片已经全部脱落,刹车盘与发电机之间的联轴器掉落在机舱;主轴刹车器上方的机舱罩壳隔热层烧灼严重;通讯滑环完全断裂,并脱落在机舱内;发电机已从弹性支撑上严重移位,弹性支撑的固定螺栓绝大部分已经断裂,发电机转子窜动严重。塔基变频器处给机舱提供交流690V 的继电器跳闸。

从主控数据可知: 事发时, 机组的发电功率为1472kW,风速为15.2m/s 时,45min 43s,机组报“变桨通讯故障”,刹车程序BP180 脱网;45min 46s,三支桨叶同时报“变桨速度慢”,刹车程序BP190,主轴刹车器制动。同时,还报出了“极限阵风”“变频器超速”;45min 53s 报 “发电机软件超速”“齿轮箱软件超速”;45min 56s 报“转子软件超速”;46min 02s,报由硬件控制的“发电机刹车200超速”、软件参数控制的“齿轮箱刹车200 超速”、安全链断开;46min 04s,报由软件参数控制的“转子刹车200 超速”和“叶片不能回到限位开关”(Mita 状态码1159)故障;46min 16s,报“刹车200 停机执行时间过长”; 46min39s,机组报“电网掉电故障”。事发时,机组高速轴的最高转速为2971rpm。

由于机组在事发时没有烧毁、倒塌,给事故分析留下了不少有价值的信息和证据:在机舱控制柜检查发现,旁路限位开关回路被改线,强行提供24V 直流(注:紧急顺桨控制线路被修改了),飞车过程中又报出了“叶片不能回到限位开关(1159)”故障,这两者之间相互应征,证明在事发前就埋下了安全隐患;事发时没有报“变桨自主运行”;因通讯滑环从基座处完全断裂,即:轮毂的交流400V 供电、机舱与轮毂的所有通信与控制接线全部断裂。

三、某风电场的机组倒塌事故

据目击者称:“事发时,事故机组叶轮转速比相邻机组快很多,且有异响,维持了大约十几分钟,然后,突然从第二节塔筒中下部折断倒塌。在机组倒塌过程中,伴随有火光及冒烟,马上又灭了”。从邻近机组了解到,事发时的风速不大,约为8 m/s - 9m/s。

现场勘察发现,三支叶片均在零度位置,没有顺桨。主轴刹车上方机舱内壁的保温层有烧灼痕迹,主控模块严重损坏,内部电池脱落、数据丢失;从变频器上的数据可知,事发时机组的最高转速为2406rpm。

原因分析

首先,在我国的风电发展初期,不少厂家的生产技术都是从国外引进,在没有来得及完全转化和吸收的情况下,就投入了大规模生产。不少的技术关键点仍未掌握,多个事故已经发生。其次,不少风电企业是从其他行业迅速转向,其管理理念和却未能及时转变。再者,我国风电企业的研发、技术人员实践经验不足,现场人员的经验和技术水平有待提高。因此,事发之前,机组的安全隐患未能及时发现和排除;事发之后,未能找出真实原因造成同类事故的多次发生。

一、采用电池作备用电源的直流变桨系统的安全性高

直流变桨系统,在紧急(电池)顺桨时,无需把备用电源的能量经过轮毂驱动器逆变成交流,只需通过继电器吸合直接将备用电源切换到直流电机,没有逆变环节,顺桨安全性增加。这种紧急顺桨方式是交流变桨系统所不具备的。

在该直流变桨系统的轮毂驱动器上,接有直流和交流400V 两种供电电源。当交流400V 供电正常时,由交流供电。在出现瞬间电网故障,机组进入低电压穿越需进行正常调桨;或外界断电,需通过轮毂驱动器上的直流供电进行停机顺桨时,均利用轮毂驱动器上的备用直流电源。

当机组因故不能切换到正常的备用直流电源顺桨,在紧急顺桨时,如轮毂控制器与主控之间的通讯正常,可通过主控再发指令使叶片回到90°;如主控与轮毂控制器的通讯再次出现故障,机组转速超过一定数值,触发硬件超速模块动作,超速信号传给轮毂控制器,由轮毂控制器控制使三支叶片按照规定的顺桨速度回90°。

有的直流变桨系统(第1 节“三桨叶同时不能顺桨引发的飞车事故”的事例二中机组采用的变桨系统),还有轮毂驱动器的电池顺桨。即:机组因故不能切换到正常紧急顺桨回路时,当轮毂驱动器上的400V 交流供电的电压过低或断开时,在轮毂驱动器内直接把电池与轮毂电机导通,实现轮毂驱动器的电池顺桨,叶片回到92°限位开关位置。这也是交流变桨系统所不具备的。

以上分析可知,直流变桨系统出现三支桨叶同时不能顺桨的概率极低。

二、飞车、倒塌及烧毁实例分析

第1 节“三桨叶同时不能顺桨引发的飞车事故”中, 事例二不仅事发时的主控数据完善,而且还找到了事发的直接证据;事例一和事例三因主控数据丢失,机组烧毁、倒塌,只能通过同类机组的长期维修经验及与观察事发时的特殊现象,判断事故发生原因。事故时与事例二存在相同的情况——三支叶片同时不能顺桨。

综合考虑机组运行原理和各种现象,三起事故的共同特点如下:首先,事故机组的电池顺桨控制回路,或旁路限位开关回路存在被强行供电的安全隐患,在机组执行高级别刹车程序时,不能切换到正常的电池顺桨回路。其次,事发时,机组出现“变桨通讯故障”,主控与轮毂变桨因此失去联系,不能通过主控指令使叶片回到90°位置。再次,机组超速时,均未能执行“变桨自主运行”程序,又再次失去顺桨的机会。因此,机组在风速较大时顺利地闯过了所有保护设置,造成三支桨叶同时不能顺桨,最终造成事故发生。

第1 节“三桨叶同时不能顺桨引发的飞车事故”中,三个事例发生的简略过程分别如下:

事例一中的机组报“变桨通讯故障”后,刹车程序BP180,由机舱、主控控制的交直流供电顺桨方式均不能执行,其后,机组再报“变桨速度太慢”,刹车程序BP190,主轴刹车器参与制动,并在30s 之后刹车器自动松开。该机组使用的是被动式刹车器,制动力为两倍满负荷扭矩,因此,在机组冒烟的同时完全停下来了,此时三支桨叶都在0°位置,当主轴刹车器再次松开,机组迅速启机。由于当时的风速较大,带着巨大的加速度的叶轮转速迅速上升,达到2400rpm硬件超速设定值,主轴刹车器再次制动,此时制动时产生的热量使机组燃烧,产生的巨大翻转扭矩使机组倒塌。

事例二中,机组在45min 43s,报“变桨通讯故障”,刹车程序BP180 脱网,不能顺桨;45min 46s,三支桨叶同时报“变桨速度慢”,刹车程序BP190,主轴刹车器制动。当时风速较大(15.2m/s),加之该机组使用的是主动式刹车器,其制动力仅为事例二倍满负荷扭矩,主轴刹车器已不能使机组停下来。制动力矩使刹车器、刹车盘、刹车器罩壳大面积脱落并砸在通讯滑环上,在主轴刹车器制动期间机组转速还在不断上升,18s 后,即:46min 02s,机组转速升至硬件超速设定值,BP200,最高转速超过2900rpm,机组振动加剧,最终导致通讯滑环完全断裂,电池顺桨到92°限位开关位置。由于飞车的时间及主轴刹车器制动的时间不长,未出现长时间持续高温,避免了机组燃烧。在BP190 主轴刹车器制动18s(小于30s)后就升至BP200,没有出现主轴刹车器松开后又再次制动产生的巨大冲击扭矩,因此,机组并未倒塌。

在事发前,存在旁路限位开关回路被强行提供24V直流的安全隐患;事发时出现“变桨通讯故障”以及未执行“变桨自主运行”程序;事发过程中出现“通讯滑环完全断裂” ,因轮毂400V交流供电断开,执行轮毂驱动器的电池顺桨,或因旁路限位开关回路的强行供电断开,执行正常的直流(紧急)顺桨,叶片顺桨到92°限位开关位置。具体按哪种情况执行,则与线路断开的时间先后有关,如瞬间同时断裂,则应按正常的电池顺桨方式执行。由此可见,对于以上飞车事发时的应急处理方式有:断UPS使机组切换到正常的直流顺桨;断箱变启动轮毂驱动器的电池顺桨。

当出现“变桨通讯故障” 或未执行“变桨自主运行”停机程序,主控均不会报“变桨自主运行”故障。而事故机组因未执行“变桨自主运行”,从而造成了飞车事故的发生。

事例三的机组报“变桨通讯故障”停机脱网,但不能顺桨,再报“变桨速度太慢”主轴刹车器制动,30s 后松开并一直处于打开状态,其后,在长达10 多分钟的时间内,机组处于超速、空转的状态,而转速一直低于2400rpm。当风速增大,转速超过2400rpm,主轴刹车器制动,最高转速也仅升至2406rpm,然而,因机组已长时间超速、摇晃,制动瞬间又产生了巨大的翻转扭矩从而促成机组倒塌。由于主轴刹车器制动的时间很短,仅有冒烟和火花,机组并未烧毁。

预防措施

在机组运维时,应重点检查机组的安全隐患和排除安全性故障。杜绝为追求发电量而不顾机组安全情况的发生。

一、紧急顺桨控制回路故障的产生及处理

从现场的故障处理经验来看,紧急顺桨控制回路故障可能源自:风电机组控制柜、轮毂的生产接线错误;机组运行过程中产生的故障;维修人员不适当的故障处理方式,或维护人员在维护时的错误改线造成机组在紧急顺桨时,叶片不能按正常的电池顺桨回路进行顺桨。

定期在风电场或者通过远程对机组安全系统进行检查,检查机组是否能顺利通过自检,当机组自检报“叶片不能回到限位开关(1159)”故障时,应重点予以排除。

二、主控、变桨控制程序的改进措施

对主控的刹车程序BP190 进行改进。按照该控制器的原设置,执行紧急顺桨的同时辅助以主轴刹车器制动,无论叶片是否回到限位开关位置,执行该刹车程序30s 后,主轴刹车器会无条件地松开。由此,若叶片能顺利回到限位开关位置,及时松开主轴刹车器,有利于保护齿轮箱和机组安全,但是,如果叶片没有回到限位开关位置,则可能危及机组安全。

正如本文的第1 节“三桨叶同时不能顺桨引发的飞车事故”中的的事例一那样,如果把主控程序修改为:只有当叶片到达92°限位开关位置,主轴刹车器才会松开;如叶片没有到达92°限位开关位置,主轴刹车器则不松开,这样事例一中的事故机组就不会出现再次“迅速启机”,机组烧毁、倒塌事故便不会发生。

三例事故的共同点是:在紧急顺桨控制回路和变桨通讯同时出现故障后,因轮毂控制器的“变桨自主运行”顺桨程序执行条件过于苛刻,不能满足。因此,该顺桨停机程序不能执行,从而造成了机组飞车、倒塌和烧毁事故的发生。

因此,需修改、完善轮毂控制器的“变桨自主运行”停机程序。尤其是当出现“变桨通讯故障”后,机组又出现超速时,应确保“变桨自主运行”停机程序的顺利执行。即:把“变桨自主运行”停机程序的“进桨”“顺桨”条件进行完善或去除。为确保出现紧急顺桨控制回路和变桨通讯同时故障时的机组安全,可增加轮毂控制器对“变桨通讯”故障的判断。当轮毂控制器判断有变桨通讯故障时,轮毂则执行“变桨自主运行”停机程序,这样,当机组正常时,执行正常的紧急顺桨停机,如紧急顺桨控制回路和变桨通讯同时故障时,能通过执行“变桨自主运行”停机程序使机组顺桨,冗余保证机组安全运行。

结语

为减少机组故障,避免重大事故的再次发生,应充分理解、消化和吸收国内外先进的风电技术,结合国内风电机组生产、运行的状况,建立良好的风电场管理,提高现场人员的技术水平及机组维护和维修质量,定期重点检查事故多发的关键部位,让消除安全隐患落到实处。下载本文

显示全文
专题