视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2014-2015学年度第一学期八县(市)一中期中联考高二文科数学试卷答案
2025-09-22 23:15:37 责编:小OO
文档
2014---2015学年度第一学期八县(市)一中期中联考

高中 二 年 数学(文)科答案

一、选择题:(每小题5分,共60分)

1-5 D A B D A     6-10 A C B B C    11-12  C D

二、填空题:(每小题4分,共16分)  

13.         14.          15. 10或11          16.  

三、解答题:

17. (本题满分12分)

解:(Ⅰ)依题意得, 

    ∵  ,∴.                                         ………… 3分

    ∵是方程的两个根

    ∴,                                                …………6分

由余弦定理得

    

    ∴.                                                        ………… 9分

(Ⅱ) 由(Ⅰ)知,,

故三角形面积为                        ………… 12分

18. (本题满分12分)

解:(Ⅰ)当a=-1时,不等式

可化为,即,解得

故不等式的解集为(1,3).                                   ………… 5分

(Ⅱ)(1)当时,不等式恒成立;                  ………… 7分

(2)当时,要使得不等式恒成立

只需即,解得,即  ………… 11分

综上所述,a的取值范围为                                ………… 12分

19. (本题满分12分)

解:(Ⅰ)数列是公差为2的等差数列,, ,成等比数列,

又因为,

    所以由                                                 ………… 2分

解得                                                         ………… 4分

所以,即                                

即数列的通项公式是                                 …………6分

故数列的前n项和                     …………7分

(Ⅱ)由(Ⅰ)得                        …………9分

                …………12分

20. (本题满分12分)

解:(Ⅰ)依正弦定理可将化为                       

                                               …………2分

又因为在中, 

所以有                                

    ∵  ,∴.                                         ………… 5分

(Ⅱ)因为的周长,                

所以当最大时,的周长最大.

解法一:因为,                ……………7分

且                                                    

即16,即(当且仅当时等号成立)         ……………11分

所以周长的最大值为12.                                         …………12分

解法二:因为                        ……………7分

所以

   ()                                  

故当且仅当时,取到最大值8                               ……………11分

所以周长的最大值为12.                                         …………12分

21. (本题满分12分)

解:(Ⅰ)由知当n=1时,有,得            …………2分

由还可得得两式相减得,即,这就是要求的递推关系式    ………5分

(Ⅱ)由(Ⅰ)的结论和(Ⅱ)的定理知数列是以2为公比的等比数列   ……7分

且此等比数列的首项为

可知数列的通项公式为                            ………9分

(3)解法一:由(Ⅱ)知数列的前n项和

=()+()+ ……+()+()

   =6()+(-3-3-……-3-3)

   =

   =                                                    ………12分

解法二:依题意可知,由(Ⅱ)知

                                                  ………12分

22. (本题满分14分)

解:(Ⅰ)设题中比例系数为,若每批购入台,则共需分批,每批价值为20元,

由题意                                  

由时, 得                                     …………3分

                                     …………5分

(Ⅱ)每批进货的数量x应控制的范围是,资金才够用。理由如下: …………7分

令,此不等式化为

解得                                                       ………10分

(Ⅲ)由(Ⅰ)知

(元)                                      …………12分

当且仅当,即时,上式等号成立.

故只需每批购入6张书桌,可以使用于支付运费和保管费的资金花费最少.                                                                    …………14分下载本文

显示全文
专题