视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
排列组合经典题型
2025-09-22 22:45:20 责编:小OO
文档
                           排  列

一、优先法

例1(1)7位同学站成一排,共有多少种不同的排法?

解:问题可以看作:7个元素的全排列=5040.

(2)7位同学站成两排(前3后4),共有多少种不同的排法?

解:根据分步计数原理:7×6×5×4×3×2×1=7!=5040.

(3)7位同学站成一排,其中甲站在中间的位置,共有多少种不同的排法?

解:问题可以看作:余下的6个元素的全排列——=720.

(4)7位同学站成一排,甲、乙只能站在两端的排法共有多少种?

解:根据分步计数原理:第一步 甲、乙站在两端有种;

第二步 余下的5名同学进行全排列有种,所以,共有=240种排列方法

(5)7位同学站成一排,甲、乙不能站在排头和排尾的排法共有多少种?

解法1(直接法):第一步从(除去甲、乙)其余的5位同学中选2位同学站在排头和排尾有种方法;第二步从余下的5位同学中选5位进行排列(全排列)有种方法,所以一共有=2400种排列方法

解法2:(排除法)若甲站在排头有种方法;若乙站在排尾有种方法;若甲站在排头且乙站在排尾则有种方法,所以,甲不能站在排头,乙不能排在排尾的排法共有-+=2400种.

说明:对于“在”与“不在”的问题,常常使用“直接法”或“排除法”,对某些特殊元素可以优先考虑

二、捆绑法:

例2. 7位同学站成一排,

(1)甲、乙两同学必须相邻的排法共有多少种?

解:先将甲、乙两位同学“捆绑”在一起看成一个元素与其余的5个元素(同学)一起进行全排列有种方法;再将甲、乙两个同学“松绑”进行排列有种方法.所以这样的排法一共有种

(2)甲、乙和丙三个同学都相邻的排法共有多少种?

解:方法同上,一共有=720种

(3)甲、乙两同学必须相邻,而且丙不能站在排头和排尾的排法有多少种?

解法一:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的5个元素中选取2个元素放在排头和排尾,有种方法;将剩下的4个元素进行全排列有种方法;最后将甲、乙两个同学“松绑”进行排列有种方法.所以这样的排法一共有=960种方法

解法二:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,若丙站在排头或排尾有2种方法,

所以,丙不能站在排头和排尾的排法有种方法

解法三:将甲、乙两同学“捆绑”在一起看成一个元素,此时一共有6个元素,因为丙不能站在排头和排尾,所以可以从其余的四个位置选择共有种方法,再将其余的5个元素进行全排列共有种方法,最后将甲、乙两同学“松绑”,所以,这样的排法一共有=960种方法.

(4)甲、乙、丙三个同学必须站在一起,另外四个人也必须站在一起

解:将甲、乙、丙三个同学“捆绑”在一起看成一个元素,另外四个人“捆绑”在一起看成一个元素,时一共有2个元素,∴一共有排法种数:(种)

说明:对于相邻问题,常用“捆绑法”(先捆后松).

三、插空法

例3.7位同学站成一排,

(1)甲、乙两同学不能相邻的排法共有多少种?

解法一:(排除法);

解法二:(插空法)先将其余五个同学排好有种方法,此时他们留下六个位置(就称为“空”吧),再将甲、乙同学分别插入这六个位置(空)有种方法,所以一共有种方法.

(2)甲、乙和丙三个同学都不能相邻的排法共有多少种?

解:先将其余四个同学排好有种方法,此时他们留下五个“空”,再将甲、乙和丙三个同学分别插入这五个“空”有种方法,所以一共有=1440种.

说明:对于不相邻问题,常用“插空法”(特殊元素后考虑).

四、倍除法

5男5女排成一排,按下列要求各有多少种排法:(1)男女相间;(2)女生按指定顺序排列

解:(1)先将男生排好,有种排法;再将5名女生插在男生之间的6个“空挡”(包括两端)中,

(2)方法1:;

方法2:设想有10个位置,先将男生排在其中的任意5个位置上,有种排法;余下的5个位置排女生,因为女生的位置已经指定,所以她们只有一种排法

故本题的结论为(种)

强化练习

1.(2007年天津卷)如图,用6种不同的颜色给图中的4个格子涂色,每个格子涂一种颜色,要求最多使用3种颜色且相邻的两个格子颜色不同,则不同的涂色方法共有     种(用数字作答).

用2色涂格子有C62×2=30种方法,

用3色涂格子,第一步选色有C63,第二步涂色,共有3×2(1×1+1×2)=18种,

所以涂色方法18×C63=360种方法,

故总共有390种方法.

故答案为:390

2.(2007年江苏卷)某校开设9门课程供学生选修,其中三门由于上课时间相同,至多选一门,学校规定每位同学选修4门,共有  75  种不同选修方案。(用数值作答)

3.(2007年北京卷)记者要为5名志愿都和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( B )

A.1440种            B.960种            C.720种            D.480种

4.(2007年全国卷I)从班委会5名成员中选出3名,分别担任班级学习委员、文娱委员与体育委员,其中甲、乙二人不能担任文娱委员,则不同的选法共有  种.(用数字作答)

∵先从其余3人中选出1人担任文娱委员,

再从4人中选2人担任学习委员和体育委员,

∴不同的选法共有C31•A42=3×4×3=36种

5.(2007年全国卷Ⅱ)从5位同学中选派4位同学在星期五、星期六、星期日参加公益活动,每人一天,要求星期五有2人参加,星期六、星期日各有1人参加,则不同的选派方法共有(  B  )

A.40种            B.60种            C.100种        D.120种

6. (2007年陕西卷)安排3名支教老师去6所学校任教,每校至多2人,则不同的分配方案共有   种.(用数字作答)

设3名老师分别为甲,乙,丙;6所学校分别为A,B,C,D,E,F;先分配甲,甲可以去这6所学校中的任一所,故有6种可能;再分配乙,由条件每校至多2人,故当乙和甲去同一所学校,则丙去剩余5所学校中一所,这种情况下有6*5=30种方案;若乙不和甲去同一所学校,则乙可以有5种选择,而丙可以去这6所学校中任一所,故有6*5*6=180种分配情况,两种情况相加共有210种方案。。

7.(2007年四川卷)用数字0,1,2,3,4,5可以组成没有重复数字,并且比20000大的五位偶数共有(  )

(A)288个         (B)240个         (C)144个           (D)126个

解析:选B.对个位是0和个位不是0两类情形分类计数;对每一类情形按“个位-最高位-中间三位”分步计数:①个位是0并且比20000大的五位偶数有个;②个位不是0并且比20000大的五位偶数有个;故共有个.本题考查两个基本原理,是典型的源于教材的题目.

8..(2007年辽宁卷)将数字1,2,3,4,5,6拼成一列,记第个数为,若,,,,则不同的排列方法有        种(用数字作答).

解析:分两步:(1)先排, =2,有2种; =3有2种; =4有1种,共有5种;(2)再排,共有种,故不同的排列方法种数为5×6=30,填30.

                                    组  合

1.组合数的性质1:.

2.组合数的性质2:=+.

一般地,从这n+1个不同元素中取出m个元素的组合数是,这些组合可以分为两类:一类含有元素,一类不含有.含有的组合是从这n个元素中取出m 1个元素与组成的,共有个;不含有的组合是从这n个元素中取出m个元素组成的,共有个.根据分类计数原理,可以得到组合数的另一个性质.在这里,主要体现从特殊到一般的归纳思想,“含与不含其元素”的分类思想.

证明:   

             

∴=+.   

说明:①公式特征:下标相同而上标差1的两个组合数之和,等于下标比原下标多1而上标与大的相同的一个组合数;

 ②此性质的作用:恒等变形,简化运算 

例1.(1)计算:;

(2)求证:=++.

解:(1)原式;

证明:(2)右边左边

例2.证明:。

证明:原式左端可看成一个班有个同学,从中选出个同学组成兴趣小组,在选出的个同学中,个同学参加数学兴趣小组,余下的个同学参加物理兴趣小组的选法数。原式右端可看成直接在个同学中选出个同学参加数学兴趣小组,在余下的个同学中选出个同学参加物理兴趣小组的选法数。显然,两种选法是一致的,故左边=右边,等式成立。

例3.证明:…(其中)。

证明:设某班有个男同学、个女同学,从中选出个同学组成兴趣小组,可分为类:男同学0个,1个,…,个,则女同学分别为个,个,…,0个,共有选法数为…。又由组合定义知选法数为,故等式成立。

例4.证明:…。

证明:左边=…=…,

其中可表示先在个元素里选个,再从个元素里选一个的组合数。设某班有个同学,选出若干人(至少1人)组成兴趣小组,并指定一人为组长。把这种选法按取到的人数分类(…),则选法总数即为原式左边。现换一种选法,先选组长,有种选法,再决定剩下的人是否参加,每人都有两种可能,所以组员的选法有种,所以选法总数为种。显然,两种选法是一致的,故左边=右边,等式成立。

例5.证明:…。

证明:由于可表示先在个元素里选个,再从个元素里选两个(可重复)的组合数,所以原式左端可看成在例3指定一人为组长基础上,再指定一人为副组长(可兼职)的组合数。对原式右端我们可分为组长和副组长是否是同一个人两种情况。若组长和副组长是同一个人,则有种选法;若组长和副组长不是同一个人,则有种选法。∴共有+种选法。显然,两种选法是一致的,故左边=右边,等式成立。

思考:

1注意区别“恰好”与“至少”

从6双不同颜色的手套中任取4只,其中恰好有一双同色的手套的不同取法共有多少种

2特殊元素(或位置)优先安排

将5列车停在5条不同的轨道上,其中a列车不停在第一轨道上,b列车不停在第二轨道上,那么不同的停放方法有种

3“相邻”用“捆绑”,“不邻”就“插空”

七人排成一排,甲、乙两人必须相邻,且甲、乙都不与丙相邻,则不同的排法有多少种

4、混合问题,先“组”后“排”

对某种产品的6件不同的正品和4件不同的次品,一一进行测试,至区分出所有次品为止,若所有次品恰好在第5次测试时全部发现,则这样的测试方法有种可能?

5、分清排列、组合、等分的算法区别

(1)今有10件不同奖品,从中选6件分给甲一件,乙二件和丙三件,有多少种分法?

   (2) 今有10件不同奖品, 从中选6件分给三人,其中1人一件1人二件1人三件, 有多少种分法?

(3) 今有10件不同奖品, 从中选6件分成三份,每份2件, 有多少种分法? 

6、分类组合,隔板处理

从6个学校中选出30名学生参加数学竞赛,每校至少有1人,这样有几种选法?下载本文

显示全文
专题