视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
数学建模心得体会
2025-09-23 10:27:55 责编:小OO
文档
一、在初中数学课堂中开展建模教学的必要性

在生活中,处处存在数学,而有数学应用的地方就有数学建模。荷兰著名的数学家弗赖登塔尔,国际数学教育权威,他主张“数学源于现实,寓于现实,用于现实”。[2]在新一轮的课程改革中,数学课本在教学内容方面进行强有力的变革。加强了数学的应用性、创新性,注意培养学生的应用意识,重视联系学生生活实际和社会实践的要求。因此,作为数学教师的我们在数学课堂教学上有必要,也必须要向学生渗透数学寓于现实生活这一理念。我们的数学教学不能离开现实生活而教。

《课标》明确指出:有效的数学学习活动书不能单纯地依赖模仿与记忆,动手实践、自主探索与合作交流是学习数学的重要方式学生在课题学习过程中接触到一些有研究和探索价值题材和方法,有利于学生全面认识数学、了解数学,使数学在学生未来的职业和生活中发挥重要作用。

二、在初中数学课堂中渗透数学建模

 数学建模是指根据具体问题,在一定的假设下找出解这个问题数学框架,求出模型的解,并对它进行验证的全过程。它是一个“迭代”的过程。即:准备→假设→建模→求解→分析→检验→应用(必要时循环执行)。[1]

数学模型在实际应用的数学问题有时过难,不宜作为教学内容;有时过易,不被人们重视,而中学数学教科书中“现成”的数学建模内容又很少,再加上我国数学建模研究起步较晚,数学建模的氛围在中学尚不浓厚,在这种情况下,只有在教学活动中起主导作用的教师首先具有数学建模的自觉意识,数学建模思想的教学渗透不仅仅是大学生、研究生的教育问题,在中学里逐步进行有关数学建模思想的渗透更是顺应了当前素质教育和教学改革的需要。

 三、如何在初中数学课堂设计建模教学

 我们在初中数学课堂中渗透数学建模,目的是培养学生的创造能力和应用能力,把学生从纯理论解题的题海中出来,把学生应用数学的意识的培养贯穿于教学的始终,让学生学得有趣、学得生动活泼。因此,在数学建模课堂教学设计方面要遵从以下几点:

 使学生体会数学与生活的密切联系,体会数学的应用价值,培养学生学习数学的应用意识。数学意识是指数学思想和数学方法在学生的认知结构固定下来以后,能主动地用数学思想方法来考虑问题或进行思维的习惯,也就是通常所说的具有“数学头脑”。在实际的教学中要很好地培养学生学习数学的应用意识,让他们体会数学的应用价值 

 2、以建模教学为载体,培养学生能运用数学的思维方式去观察、分析现实社会,并解决日常生活中的问题。数学来源于生活同时又作用于生活,现实生活中许多问题都能通过建立数模型去解答。

  3、注重培养学生对数学建模的构建过程,激发学生学习数学的积极性。

虽然数学建模的目的是为了解决实际问题,但对于中学生来说,进行数学建模教学的主要目的并不是要他们去解决生产、生活中的实际问题,而是要培养他们的数学应用意识,掌握数学建模的方法,为将来的工作打下坚实的基础。因此,在教学时,要充分强调过程的重要性,要授之以渔,尤其要注重培养学生把初看起来杂乱无章的现象中抽象出恰当的数学问题的能力,即培养学生把客观事物的原型与抽象的数学模型联系起的能力。

 总之,在数学建模活动教学中,我们的教学设计要注重从生活实际出发,强调学生的参与性。对于许多让学生感到无从入手的问题,我们不能急于一时。要一步一步把这“建”的意识培养起来。因为学生出现的这些困难并不都是数学上的,更多的往往是生活经验及相关知识的缺乏、或对问题的兴趣和专注程度等。因此,我们在数学建模教学的活动设计中,要注意以下几点:1、注意从学生已有的认知水平出发,小步子、低要求、分层递进。2、注意结合正常教学上的教材内容。3、注意建模过程的构建,培养学生思考的过程。4、注意培养学生用建模的眼光看问题。但是,中学数学建模活动能否及早广泛地开展。还有许许多多问题值得我们去关注,去研究的问题。如在当今信息时代社会里,我们的教学设备是否现代化。我们的教学手段如何将直接影响我们建模活动的开展。还有我们广大的数学教师个人的意识行为及业务水平等都将直接影响数学建模活动进一步开展,进一步推广。

“第二届全国数学建模骨干教师培训会暨中学数学建模研讨会”于2011年11月21 日——23日在济南市历城区召开。我校两名教师参会。

    教育部专业教育研究院李兴洲主任、资料会议中心报刊社社长宣小红、山东省教科所所长亓殿强、济南市教科所所长张金宝、教科所理论室主任王如才、历城区教育局副李殿杰、区教科室主任谢兆水等出席了本次会议。来自全国5个省、市的校长、骨干教师400余人参加了本次会议。

    本次研讨会分为专家报告、观摩课、经验交流与论文评选三个环节。首都师范大学数学科学院教授方运加、威海市教育学会副会长孙义君等分别就中小学数学建模方面做了专题报告。

    研讨会议分历城区实验小学分会场、洪楼小学分会场和历城三中分会场。会上,来自全国各地的35名优秀教师分别进行了示范课展示。 

数学模型(Mathematical Model)是一种模拟,是用数学符号、数学式子、程序、图形等对实际课题本质属性的抽象而又简洁的刻划,它或能解释某些客观现象,或能预测未来的发展规律,或能为控制某一现象的发展提供某种意义下的最优策略或较好策略。数学模型一般并非现实问题的直接翻版,它的建立常常既需要人们对现实问题深入细微的观察和分析,又需要人们灵活巧妙地利用各种数学知识。这种应用知识从实际课题中抽象、提炼出数学模型的过程就称为数学建模(Mathematical Modeling)。

   数学建模是一种数学的思考方法,是运用数学的语言和方法,通过抽象、简化建立能近似刻画并"解决"实际问题的一种强有力的数学手段。 

  数学建模就是用数学语言描述实际现象的过程。这里的实际现象既包涵具体的自然现象比如自由落体现象,也包含抽象的现象比如顾客对某种商品所取的价值倾向。这里的描述不但包括外在形态,内在机制的描述,也包括预测,试验和解释实际现象等内容。 

  我们也可以这样直观地理解这个概念:数学建模是一个让纯粹数学家(指只懂数学不懂数学在实际中的应用的数学家)变成物理学家,生物学家,经济学家甚至心理学家等等的过程。 

数学模型一般是实际事物的一种数学简化。它常常是以某种意义上接近实际事物的抽象形式存在的,但它和真实的事物有着本质的区别。要描述一个实际现象可以有很多种方式,比如录音,录像,比喻,传言等等。为了使描述更具科学性,逻辑性,客观性和可重复性,人们采用一种普遍认为比较严格的语言来描述各种现象,这种语言就是数学。使用数学语言描述的事物就称为数学模型。有时候我们需要做一些实验,但这些实验往往用抽象出来了的数学模型作为实际物体的代替而进行相应的实验,实验本身也是实际操作的一种理论替代。

     数学建模是在20世纪60和70年代进入一些西方国家大学的,我国的几所大学也在80年代初将数学建模引入课堂。经过20多年的发展现在绝大多数本科院校和许多专科学校都开设了各种形式的数学建模课程和讲座,为培养学生利用数学方法分析、解决实际问题的能力开辟了一条有效的途径。 

    大学生数学建模竞赛最早是1985年在美国出现的,19年在几位从事数学建模教育的教师的组织和推动下,我国几所大学的学生开始参加美国的竞赛,而且积极性越来越高,近几年参赛校数、队数占到相当大的比例。可以说,数学建模竞赛是在美国诞生、在中国开花、结果的。

     1992年由中国工业与应用数学学会组织举办了我国10城市的大学生数学模型联赛,74所院校的314队参加。教育部领导及时发现、并扶植、培育了这一新生事物,决定从1994年起由教育部高教司和中国工业与应用数学学会共同主办全国大学生数学建模竞赛,每年一届。十几年来这项竞赛的规模以平均年增长25%以上的速度发展。 

 2009 年全国有33个省/市/自治区(包括和澳门特区)1137所院校、15046个队(其中甲组12276队、乙组2770队)、4万5千多名来自各个专业的大学生参加竞赛,是历年来参赛人数最多的(其中和澳门是首次参赛)!

初中学生年龄一般在11—14周岁,智力活动带有明显的随意性,其抽象思维更偏向于“经验型”.如何让他们能够逐步的摆脱具体形象和直接经验的,借助于概念进行合乎逻辑的抽象思维活动,开始在教师帮助下地搜集事实材料,进行分析综合,抽象概括事物的本质属性,正是现阶段我们需要不断探索的地方.因此,应结合学生的心理特点和思维规律,进行应用问题的教学。

    渗透教学过程中需要注意的几个问题

(1)重视基本方法和基本解题思想的渗透与训练

为培养学生的应用意识,提高学生分析问题解决问题的能力,教学中首先应结合具体问题,教给学生解答应用题的基本方法、步骤和建模过程,建模思想。

教学应用题的常规思路是:将实际问题抽象、概括、转化­­à数学问题à解决数学问题à回答实际问题。具体可按以下程序进行:审题, 建模, 求解, 得出结论, 还原回原题.

例:在初一教材:学校团委组织65名新团员为学校建花坛搬砖,女同学每人每次搬6块,男同学每人每次搬8块,每人各搬了4块,共搬了1800块,问这些新团员中有多少名男同学?     

审题----教会学生读题,哪些是有用信息,哪些是关键词句,特别是含有等量关系的词,引导学生抛开没有用的信息,建立等量关系.例如这题中学生在找等量关系时出现了两种意见,一种是男女搬砖总数是1800块,还有一种是男女总人数65名,一时相持不下,从他们以往经验来看,一题中就只有一个等量关系,这与他们的认知不符合了.笔者在这时没有指出哪一种意见正确,而是进行了第二步.

设元----找出未知量与已知量,设未知数.例如题中不知道男女同学人数,设男同学的人数为x人,笔者提出女同学的人数为多少?大多数学生能进行转换写出女同学的人数为(65-x)人,那么也就是说其中有一个等量关系没有用其列方程,而是用它表示了另外一个未知的量,这时学生心中的疑问基本解决了.

列方程求解----用代数式表示等量关系中的各个基本关系,解出方程.

建模----题目做完以后,要思考这样的题是否具有典型的特点,首先从题目环境入手,常规应用题的分类在这里不适用,然后从建立的等量关系入手,关键词是“共”.这是利用总分量等于各个分量的和解题的.

 (2) 引导学生将应用问题进行归类   

为了增强学生的建模能力,在应用问题的教学中,及时结合所学章节,引导学生将应用问题进行归类使学生掌握熟悉的实际原型,发挥“定势思维”的积极作用,可顺利解决数学建模的困难。这样,学生遇到应用问题时,针对问题情景,就可以,通过类比寻找记忆中与题目相类似的实际事件,利用联想,建立数学模型。这里笔者提出一种新的探索方向,在对应用题的划分中另给出一种按照解题模型来划分的方法,更侧重于利用等量关系中蕴涵的数学模型.     

(3)课后巩固与练习

充分运用课本的练习题、习题、复习题,让学生自己动手、动脑,应用所学的知识解决实际问题。练习题位于具体的理论知识后面,建模方向性强,教师只需稍作指导;而习题则更多利用教师批改作业的机会,主要纠正数学语言转化过程,及解题的规范过程;复习题由于综合性强,学生解决有困难,教师要给予必要的指导、提示。下载本文

显示全文
专题