1、土木工程材料可从不同角度加以分类,如按化学成分,可分为无机材料、有机材料和复合材料;如按材料的功能,可分为结构材料与功能材料两类;如按材料在建筑物中的部位,可分为承重构件(梁、板、柱)、屋面、墙体、地面等材料。
2、简述土木工程材料的发展趋势。
2、土木工程材料有下列发展趋势:
(1)高性能化。例如研制轻质、高强、高耐久、优异装饰性和多功能的材料,以及充分利用和发挥各种材料的特性,采用复合技术,制造出具有特殊功能的复合材料。
(2)多功能化。具有多种功能或智能的土木工程材料。
(3)工业规模化。土木工程材料的生产要实现现代化、工业化,而且为了降低成本、控制质量、便于机械化施工,生产要标准化、大型化、商品化等。
(4)生态化。为了降低环境污染、节约资源、维护生态平衡,生产节能型、利废型、环保型和保健型的生态建材,产品可再生循环和回收利用。
3、实行标准化的意义有哪些?
3、实行标准化对经济、技术、科学及管理等社会实践有着重要意义,这样就能对重复性事物和概念达到统一认识。以建筑材料性能的试验方法为例,如果不实行标准化,不同部门或单位采用不同的试验方法。则所得的试验结果就无可比性,其获得的数据将毫无意义。所以,没有标准化,则工程的设计、产品的生产及质量的检验就失去了共同依据和准则。由此可见,标准化为生产技术和科学发展建立了最佳秩序,并带来了社会效益。
4、简述土木工程建设中控制材料质量的方法与过程。
4、工程实际中对材料进行质量控制的方法主要有:通过对材料有关质量文件的书面检验初步确定其来源及基本质量状况;对工程拟采用的材料进行抽样验证试验。根据检验所得的技术指标来判断其实际质量状况,只有相关指标达到相应技术标准规定的要求时,才允许其在工程中使用;在使用过程中,通过检测材料的使用功能、成品或半成品的技术性能,从而评定材料在工程中的实际技术性能表现;在使用过程中,材料技术性能出现异常时,应根据材料的有关知识判定其原因,并采取措施避免其对于工程质量的不良影响。
5、简述土木工程材料课程学习的基本方法与要求以及实验课学习的意义。
5、土木工程材料课程具有内容繁杂、涉及面广、理论体系不够完善等特点,因此学习时应在首先掌握材料基本性质和相关理论的基础上,再熟悉常用材料的主要性能、技术标准及应用方法;同时还应了解典型材料的生产工艺原理和技术性能特点,较清楚地认识材料的组成、结构、构造及性能;必须熟悉掌握常用土木工程材料的主要品种和规格、选择及应用、储运与管理等方面的知识,掌握这些材料在工程使用中的基本规律。
材料试验是检验土木工程材料性能、鉴别其质量水平的主要手段,也是土木工程建设中质量控制的重要措施之一。通过实验课的学习,可以加深对理论知识的理解,掌握材料基本性能的试验和质量评定方法,培养实践技能。
1.材料的质量吸水率和体积吸水率有何不同?什么情况下采用体积吸水率或质量吸水率来反映其吸水性?
1.答:质量吸水率和体积吸水率都是反映材料吸水性能的指标,但含义不同。质量吸水率是指材料在吸水饱和状态下所吸入水的质量占材料干燥质量的百分率;而体积吸水率是指材料在吸水饱和状态下所吸入水的体积占干燥材料在自然状态下体积的百分率。前者适宜于表示具有封闭孔隙或极大开口孔隙的材料的吸水性;后者适宜于表示具有很多微小开口孔隙的轻质材料(如加气混凝土、软木等)的吸水性。
2.材料的强度与强度等级的关系如何?影响材料强度测试结果的试验条件有哪些?怎样影响?
2. 答:材料在外力作用下抵抗破坏的能力,称为材料的强度;按其强度值的大小划分为若干个等级,则是材料的强度等级。材料的强度与材料的含水率状态及温度有关,含有水分的材料其强度较干燥时低;一般温度高时材料的强度降低。材料的强度还与其测试的所用的试件形状、尺寸有关,与实验时的加荷速度、试件的表面性状有关,相同材料采用小试件测得的强度较大,试件高,加荷速度快者强度偏高,试件表面不平或表面涂润滑剂时所测得的强度偏低。
3.材料的耐久性主要包含哪些内容?影响材料耐久性的破坏因素主要有哪几方面?提高材料耐久性的措施主要有哪些?
3.答:材料的耐久性是材料的一种综合性质,诸如:抗渗性、抗冻性、抗风化性、抗老化性、抗化学侵蚀性、耐热性、耐火性及耐磨性等均属于耐久性的范围。对不同的材料有不同的耐久性要求。
影响材料耐久性的破坏因素主要有物理因素、化学因素、物理化学因素、机械因素及生物因素等几方面。
不同的材料或相同的材料使用在不同的环境中,所受到的破坏作用有可能不同。为提高材料的耐久性,以利于延长土木工程结构物的使用寿命和减少维修费用,可根据工程环境和材料特点从以下方面采取相应的措施;
(1)提高材料自身对环境破坏因素的抵抗性(如提高材料的物理力学及化学性能等);
(2)设法减轻环境介质对材料的破坏作用(如排除或降低破坏因素对材料的作用等);
(3)用其它材料保护主体材料免受破坏(如覆面、抹灰、刷涂料等)。
5. 评价材料热工性能的常用参数有哪几个?要保持建筑物室内温度的稳定性并减少热损失,应选用什么样的建筑材料?
5.答:评价材料热工性能的常用参数有材料的导热系数、热容量与比热,材料的导热系数和热容量是设计建筑物围护结构进行热工计算时的重要参数,要保持建筑物室内温度的稳定性并减少热损失,应选用导热系数小而热容量较大的建筑材料。
6.为什么秋天新建成的房屋的墙体当年冬天保暖性能差?
6.答:干燥墙体由于其孔隙被空气所填充,而空气的导热系数很小,只有0.023W/(m·K)。因而干墙具有良好的保暖性能。而新建房屋的墙体由于未完全干燥,其内部孔隙中含有较多的水分,而水的导热系数为0.58W/(m·K),是空气导热系数的近25倍,因而传热速度较快,保暖性较差。尤其在冬季。一旦湿墙中孔隙水结冰后,传导热量的能力更加提高,冰的导热系数为2.3W/(m·K).是空气导热系数的100倍,保暖性就更差。
7.材料的孔隙率和孔隙构造对材料的哪些性能有影响?如何影响?
7.答:材料的孔隙率和孔隙构造对材料的体积密度、强度、吸水性、吸湿性、抗渗性、抗冻性、导热性及吸音性等性质均会产生影响,其影响如下:(1)孔隙率越大,其体积密度越小;(2)孔隙率越大其强度越低;(3)密实材料及具有闭口孔的材料是不吸水和不吸湿的;具有粗大孔的材料因其水分不易存留,其吸水率常小于孔隙率;而那些孔隙率较大 且具有开口连通孔的亲水性材料具有较大的吸水与吸湿能力;(4)密实的或具有闭口孔的材料是不会发生透水现象的。具有较大孔隙率且为开口连通大孔的亲水性材料往往抗渗性较差;(5)密实材料及具有闭口孔的材料具有较好的抗冻性;(6)孔隙率越大,导热系数越小,导热性越小,绝热性越好;孔隙率相同时,具有较大孔径或连通孔的材料,导热系数偏大,导热性较大,绝热性较差;(7)孔隙率较大且为细小连通孔时,材料的吸音性较好。
1、气硬性胶凝材料和水硬性胶凝材料有何区别?如何正确使用这两类胶凝材料?
1、气硬性胶凝材料只能在空气中硬化,也只能在空气中保持或继续发展其强度。水硬性胶凝材料不仅能在空气中硬化,而且能更好的在水中硬化,并保持和继续发展其强度。
所以气硬性胶凝材料只适用于地上或干燥环境,不宜用于潮湿环境,更不能用于水中,而水硬性胶凝材料既适用于地上,也可以用于地下或水中。
2、建筑石膏的特性有哪些?为什么说建筑石膏及制品适用于室内,而不适用于室外?
2、建筑石膏的特性有:(1)凝结硬化快,凝结硬化时体积微膨胀;(2)孔隙率大、体积密度小强度低;(3)保温隔热性和吸声性好;(4)防火性能好;(5)具有一定的调温、调湿性;(6)耐水性和抗冻性差;(7)装饰性好。根据建筑石膏的以上技术特性可知,建筑石膏及其制品是一种性能优良的室内建筑装饰材料。而在室外使用建筑石膏制品时,必然要受到雨水冰冻的作用,而建筑石膏制品的耐水性、吸水率高、抗渗性差、抗冻性差,所以不适用于室外。
3、石灰的特性有哪些?其主要用途是什么?
3、石灰的特性为:(1)可塑性好,保水性好;(2)凝结硬化慢、强度低;(3)硬化过程中体积收缩大;(4)耐水性差。其主要用途有:(1)制作石灰乳涂料;(2)配制石灰砂浆和混合砂浆;(3)配制灰土和三合土;(4)生产硅酸盐制品;(5)制作碳化石灰板。
4、某民宅内墙抹灰时采用水泥石灰混合砂浆,可过了一段时间,墙面一些部位却出现起鼓凸出并伴有放射状的及网状的裂纹,试分析其原因。
4、墙面一些部位出现起鼓凸出并伴有放射状的及网状的裂纹,是由于配制水泥石灰混合砂浆采用的石灰膏中有过火石灰,这部分过火石灰在消解、陈伏阶段未完全熟化,以至于在砂浆硬化后,过火石灰吸收空气中的水分继续熟化,产生体积膨胀而导致的。
5、既然石灰不耐水,为什么有它配制的灰土或三合土却可以用于基础的垫层、道路的基层等潮湿部位?
5、灰土或三合土是由消石灰粉和粘土等按比例配制而成的,经碾压或夯实后,密实度提高,并且在潮湿环境中石灰与粘土表面的活性氧化硅和氧化铝反应,生成水硬性的水化硅酸钙或水化铝酸钙,所以灰土或三合土的强度和耐水性会随时间的延长而逐渐提高,可以在潮湿环境中使用。
6、水玻璃具有哪些特性?其主要用途是什么?
6、水玻璃的特性为:(1)胶结能力强,硬化时析出的硅酸凝胶有堵塞毛细孔而防止水渗透的作用。水玻璃混凝土的抗压强度可达15-40MPa;(2)耐酸性好。水玻璃具有很强的耐酸能力,能抵抗大多数无机酸和有机酸的作用;(3)耐热性好。水玻璃不燃烧,在高温下硅酸凝胶干燥的很快,强度并不降低,甚至有所增加。
水玻璃在建筑工程中的用途如下:(1)涂刷建筑材料表面,提高密实性和抗风化性能;(2)用于加固地基;(3)配制耐酸混凝土和耐酸砂浆;(4)配制耐热混凝土和耐热砂浆;(5)配制快凝防水剂。
1、试说明以下各条的原因:(1)生产通用硅酸盐水泥时必须掺入适量的石膏;(2)水泥必须具有一定的细度;(3)水泥体积安定性必须合格;(4)测定水泥凝结时间、体积安定性及强度等级,均须采用规定的加水量。
1、(1)生产通用硅酸盐水泥时掺入适量的石膏是为了调节水泥的凝结时间。若不掺入石膏,由于水泥熟料矿物中的C3A急速水化生成水化铝酸四钙晶体,使水泥浆体产生瞬时凝结,以致无法施工。当掺入石膏时,生成的水化铝酸四钙会立即与石膏反应,生成高硫型水化硫铝酸钙(即钙矾石),它是难溶于水的针状晶体,包围在熟料颗粒的周围,形成“保护膜”,延缓了水泥的水化。但若石膏掺量过多,在水泥硬化后,它还会继续与固态的水化铝酸四钙反应生成钙矾石,体积约增大1.5倍,引起水泥石开裂,导致水泥安定性不良。所以生产通用硅酸盐水泥时必须掺入适量的石膏。
(2)水泥颗粒的粗细直接影响水泥的水化、凝结硬化、水化热、强度、干缩等性质,水泥颗粒越细总表面积越大,与水接触的面积也大,水化反应速度越快,水化热越大,早期强度较高。但水泥颗粒过细时,会增大磨细的能耗和成本,且不宜久存。此外,水泥过细时,其硬化过程中还会产生较大的体积收缩。所以水泥粉磨必须有一定的细度。
(3)水泥的体积的安定性是指水泥在硬化过程中体积变化的均匀性,若体积变化不均匀,会使水泥混凝土结构产生膨胀性裂缝,甚至引起严重的工程事故。所以水泥体积安定性必须合格,
(4)水泥凝结时间、体积安定性以及强度等级都与用水量有很大的关系,为了消除差异,测定凝结时间和体积安定性必须采用标准稠度用水量;测定水泥强度则采用相同的用水量。
2、现有甲乙两厂生产的硅酸盐水泥熟料,其矿物组成如下表所示。试估计和比较这两厂所生产的硅酸盐水泥的强度增长速度和水化热等性质有何差异?为什么?
| 生产厂 | 熟料矿物组成\% | |||
| C3S | C2S | C3A | C4AF | |
| 甲 | 56 | 17 | 12 | 15 |
| 乙 | 42 | 35 | 7 | 16 |
3、某些体积安定性不合格的水泥,在存放一段时间后变为合格,这是为什么?
3、某些体积安定性轻度不合格或略有些不合格的水泥,在空气中放置2~4周后,水泥中的部分游离氧化钙可吸收空气中的水蒸汽而熟化为氢氧化钙,使水泥中的游离氧化钙的膨胀作用被减小或消除,因而水泥的安定性可能由轻度不合格变为合格。但必须指出,在重新检验并在体积安定性合格时方可使用,若在放置一段时间后仍不合格,则仍然不得使用。安定性合格的水泥也必须重新标定其强度等级,按标定的强度等级使用。
4、引起水泥体积安定性不良的原因及检验方法是什么?建筑工程使用安定性不良的水泥有何危害?水泥安定性不合格怎么办?
4、引起水泥体积安定性不良的原因是熟料中含有过多的游离氧化钙、游离氧化镁和石膏含量过多。游离氧化钙可用煮沸法检验;游离氧化镁要用蒸压法才能检验出来,石膏掺量过多造成的安定性不良,在常温下反应很慢,需长期在常温水中才能发现,两者均不便于快速检验,因此国家标准规定控制水泥中游离氧化镁及三氧化硫的含量。
在建筑工程使用安定性不良的水泥会由于不均匀的体积变化,使水泥混凝土结构产生膨胀性的裂缝,引起严重的工程事故。体积安定性不合格的水泥不得用于任何工程。
5、为什么生产硅酸盐水泥时掺适量的石膏对水泥不起破坏作用,而硬化的水泥石遇到硫酸盐溶液的环境时生成的石膏就有破坏作用?
5、生产硅酸盐水泥时掺入适量石膏是为了调节水泥凝结时间,石膏是在水泥凝结硬化初期与水化铝酸四钙发生反应,此时水泥浆体具有可塑性,所以不会对水泥起到破坏作用。而当硬化的水泥石在有硫酸盐溶液的环境中生成石膏时,此生成的石膏再与水化铝酸四钙反应生成高硫型水化硫铝酸钙(钙矾石),发生体积膨胀,而此时水泥硬化后已无可塑性,呈现脆性,从而使水泥石破坏。
6、水化热有何利弊?什么情况下配制混凝土选择水泥时要考虑水化热的影响?
6、水化热的弊端:水化热大且集中放出时,对于大体积混凝土,由于热量的积蓄会引起混凝土内部温度升高较多,而表面温度受环境的影响较低,内外温差产生热应力导致混凝土开裂;在夏季施工的混凝土中,会产生热膨胀,冷却后产生裂纹。
水化热的利:水化热大时,对冬季施工的混凝土有利,在保温措施下,使混凝土保持一定的温度,不致冻胀破坏,并能加速水泥的水化硬化。另外,由于内部温度较高,也可促进掺矿物掺合料的混凝土的早期水化,提高早期强度。
对于上述一些情况,在配制混凝土选择水泥时要考虑水化热的影响。
7、试分析提高水泥强度的方法有哪些?
7、欲提高水泥强度,可从以下几方面考虑:(1)水泥熟料的矿物组成与细度:提高熟料中C3S的含量,可加快水泥的水化反应速度,提高早期强度;提高C2S的含量,可提高水泥的后期强度;生产道路水泥时适当提高C4AF的含量,可提高抗折强度。适当提高水泥的细度,可提高水泥的早期强度。(2)养护条件:保持足够的湿度和适当的温度,有利于水泥的凝结硬化和强度发展。(3)养护时间:养护时间越长其强度越高。(4)混合材料的品种和掺量:混合材料的品种和掺量不同,其强度发展也不同。
8、国家标准对通用硅酸盐水泥的化学性质有哪几项要求?其意义是什么?
8、国家标准对通用硅酸盐水泥的化学性质有不溶物、烧失量、MgO、SO3、氯离子、碱含量等6项技术要求。其意义如下:
(1)不溶物指水泥熟料煅烧过程中存留的残渣,其含量可作为水泥烧成反应是否完全的指标;(2)烧失量是指将水泥在950~1000℃下灼烧15~20min的质量减少率,这些失去的物质主要是水泥中所含有的水分和二氧化碳,可大致判断水泥的受潮及风化程度;(3)熟料中游离MgO的含量是影响水泥安定性的一个重要指标;(4)SO3也是影响水泥安定性的重要指标之一;(5)氯离子会加速混凝土中钢筋的锈蚀作用,因此对其含量也必须加以;(6)碱含量指水泥中碱性氧化物如氧化钠和氧化钾的含量。碱性氧化物过多,如遇混凝土中的骨料含有活性二氧化硅时,则有可能引起碱骨料反应,导致耐久性不良。
9、试述硅酸盐水泥腐蚀的类型、机理及防止措施。
9、硅酸盐水泥腐蚀的类型有4种:溶出性腐蚀(软水腐蚀)、溶解性化学腐蚀(一般酸或盐类腐蚀)、膨胀性化学腐蚀(硫酸盐腐蚀)和强碱的腐蚀。
(1)溶出性腐蚀(软水腐蚀):当水泥石与软水长期接触时,水泥石中的氢氧化钙会溶于水中,若周围的水是流动的或有压力的,氢氧化钙将不断地溶解流失,使水泥石的碱度降低,同时由于水泥的水化产物必须在一定的碱性环境中才能稳定,氢氧化钙的溶出又导致其他水化产物的分解,最终使水泥石破坏。
(2)溶解性化学腐蚀:其实质是离子交换反应,水中的酸类或盐类与水泥石中的氢氧化钙起置换反应,生成易溶性盐或无胶结力的物质,使水泥石破坏。这类腐蚀有碳酸、一般酸及镁盐的腐蚀。
(3)膨胀性化学腐蚀以硫酸盐腐蚀为代表,其机理是水泥石中的氢氧化钙与硫酸盐类物质反应生成高硫型水化硫铝酸钙(钙矾石), 体积增大1.5~2倍,导致水泥石开裂破坏。
(4)强碱的腐蚀:强碱溶液与水泥水化产物反应生成的胶结力差且易为碱液溶析的物质,或因碱液渗入水泥石孔隙中后,又在空气中干燥呈结晶析出,由结晶产生压力使水泥石膨胀破坏。
防止水泥石腐蚀的措施有:(1)根据环境特点,合理选择水泥品种;(2)提高水泥石的密实度;(3)在水泥石的表面加做保护层。
10、水泥储存中为何要严防受潮、过期和品种混乱?
10、因为水泥受潮后,颗粒表面会发生水化而结块,导致强度降低,甚至丧失胶凝能力。即使在储存条件良好的情况下,水泥也会吸收空气中的水分和二氧化碳,发生缓慢水化和碳化,导致强度降低,此即水泥的风化。因此,水泥的储存期一般不超过三个月。水泥要按不同品种、强度等级及出厂日期分别存放,并加以标识,先存先用。不同品种的水泥混合使用时,容易造成凝结异常或其它事故。
11、某工地建筑材料仓库存有白色胶凝材料三桶,原分别标明为磨细生石灰、建筑石膏和白水泥,后因保管不善,标签脱落,问可用什么简易方法来加以辨认?
11、根据这三种材料的特性,用加水的方法来辨认,加水后在5~30min内凝结并具有一定强度的是建筑石膏,发热量最大且有大量水蒸气放出的是生石灰,在45min~12h内凝结硬化的则是白水泥。
12、常用的活性混合材料有哪些?活性混合材料产生硬化的条件是什么?
12、常用的活性混合材料有粒化高炉矿渣、火山灰质混合材料、粉煤灰等。活性混合材料产生硬化的条件是要有激发剂的存在,激发剂有碱性激发剂或硫酸盐激发剂。
13、掺大量活性混合材料的水泥水化反应有何特点?对水泥性质有何影响?
13、掺大量活性混合材料的水泥水化反应分两步进行:
(1)水泥熟料矿物的水化:其水化产物与硅酸盐水泥相同;(2)活性混合材料的水化:水泥熟料水化生成的Ca(OH)2与掺入的石膏分别作为碱性激发剂和硫酸盐激发剂,与混合材料的活性成分如活性氧化硅、活性氧化铝等发生二次水化反应,不断生成新的水化硅酸钙、水化铝酸钙、水化硫铝酸钙及水化硫铁酸钙等水化产物,使水泥石的后期强度得以迅速提高。
由于熟料矿物比硅酸盐水泥少得多,而且水化反应分两步进行,第二步水化反应从时间上滞后,致使这类水泥凝结硬化速度较慢,早期(3-7d)强度较低,但后期由于二次水化反应的产物大大增加,使强度增长较快,甚至超过硅酸盐水泥。另外,由于熟料矿物少,它们的水化热小;硬化水泥石中氢氧化钙、水化铝酸钙少,则抗软水、酸类或盐类侵蚀性高;硬化水泥石的碱度低,易碳化,这对防止钢筋锈蚀不利;混合材料易泌水形成毛细管通道,使水泥的密实度、匀质性下降,导致抗冻性较差。
14、试述掺大量活性混合材料的硅酸盐水泥的共性与特性。
14、掺大量活性混合材料的硅酸盐水泥的共性:(1)水化热小;(2)硬化慢,早期强度低,后期强度高;(3)抗化学腐蚀性高;(4)对温度较为敏感,低温下强度发展较慢,适合高温养护;(5)抗碳化能力较差;(6)抗冻性较差。
特性:矿渣硅酸盐水泥:(1)泌水性大,抗渗性差;(2)耐热性好;(3)干缩率大。
火山灰质硅酸盐水泥:(1)保水性好、抗渗性好;(2)干缩率大;(3)耐磨性差。
粉煤灰硅酸盐水泥:(1)干缩小、抗裂性高;(2)耐磨性差。
复合硅酸盐水泥:干缩较大。
15、为什么矿渣硅酸盐水泥 火山灰质硅酸盐水泥和粉煤灰硅酸盐水泥不宜用于早期强度要求高或低温环境中施工的混凝土工程?
15、因为矿渣硅酸盐水泥,火山灰质硅酸盐水泥和粉煤灰硅酸盐水泥中熟料矿物的含量相对减少了,故其早期硬化较慢,早期强度低,又因这几种水泥对温度的变化很敏感,低温下强度发展更慢,所以不宜用于早期强度要求较高或较低温度环境中施工的混凝土工程。
16、有下列混凝土构件和工程,试分别选用合适的水泥品种,并说明理由:
(1)现浇混凝土楼板、梁、柱;(2)采用蒸汽养护的混凝土构件;(3)厚大体积的混凝土工程;(4)水下混凝土工程;(5)高强度混凝土工程;(6)高温设备或窑炉的混凝土基础;(7)严寒地区受冻融的混凝土工程;(8)有抗渗性要求的混凝土工程;(9)混凝土地面或道路工程;(10)有硫酸盐腐蚀的地下工程;(11)冬期施工的混凝土工程;(12)与流动水接触的混凝土工程;(13)水位变化区的混凝土工程;(14)处于干燥环境中的混凝土工程;(15)海港码头工程;(16)紧急抢修的工程或紧急军事工程。
16、(1):现浇混凝土楼板、梁、柱:宜选用普通硅酸盐水泥,因为该混凝土对早期强度有一定的要求。
(2)采用蒸汽养护的混凝土构件:宜选用矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥及复合硅酸盐水泥,因为这几种水泥适宜蒸汽养护,不仅能提高其早期强度,而且使后期强度也得到提高。
(3)厚大体积的混凝土工程:宜选用矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥以及复合硅酸盐水泥,因为这几种水泥水化热低。
(4)水下混凝土工程:宜选用矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥以及复合硅酸盐水泥,因为这几种水泥具有较高的抗腐蚀能力,适用于水中混凝土。
(5)高强混凝土工程:宜选用硅酸盐水泥。因为该水泥强度等级最高,适用于配制高强混凝土。
(6)高温设备或窑炉的混凝土基础:宜选用矿渣水泥。因为该水泥耐热性好,与耐热粗 细骨料配制成的耐热混凝土耐热度达到1300~1400℃,可用于高温设备或窑炉的混凝土基础。
(7)严寒地区受冻融的混凝土工程:宜选用普通硅酸盐水泥,因为该水泥抗冻性好。
(8)有抗渗性要求的混凝土工程:宜选用火山灰质硅酸盐水泥、普通硅酸盐水泥。因为这两种水泥抗渗性高。
(9)混凝土地面或道路工程:宜选用道路水泥、硅酸盐水泥及普通硅酸盐水泥,因为这几种水泥的早期强度高,干缩性小,耐磨性好,抗冲击能力强。
(10)有硫酸盐腐蚀的地下工程:优先选用矿渣硅酸盐水泥,因该水泥抗硫酸盐介质腐蚀的能力强。
(11)冬期施工的混凝土工程:宜选用快硬硅酸盐水泥、硅酸盐水泥,因为这两种水泥凝结硬化快,早期强度高,且抗冻性好。
(12)与流动水接触的混凝土工程:宜选用矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥以及复合硅酸盐水泥,因为这些水泥抵抗软水侵蚀的能力强。
(13)处于水位变化区的混凝土工程:宜选用普通硅酸盐水泥。因为该水泥抵抗干湿交替作用的能力强。
(14)处于干燥环境中的混凝土工程:宜选用普通硅酸盐水泥,因为该水泥硬化时干缩小,不易产生干缩裂纹,可用于干燥环境中的混凝土工程。
(15)海港码头工程:宜选用矿渣硅酸盐水泥,火山灰质硅酸盐水泥,粉煤灰硅酸盐水泥以及复合硅酸盐水泥,因为这几种水泥耐腐蚀性好。
(16)紧急抢修的工程或紧急军事工程:宜选用快硬硅酸盐水泥,快硬硫铝酸盐水泥,因为要求早期凝结硬化快。
17、下列混凝土工程中不宜使用哪些水泥?说明理由。
(1)处于干燥环境中的混凝土工程; (2)厚大体积的混凝土工程 (3)严寒地区经常与水接触的混凝土工程; (4)有抗渗防水要求的混凝土工程; (5)与流动水接触的混凝土工程;(6)采用湿热养护的混凝土构件;(7)冬期施工的混凝土工程;(8)与硫酸盐介质接触的混凝土工程;(9)处于高温高湿环境的混凝土工程;(10)有耐磨要求的混凝土工程。
17、(1)火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥。因为它们的干缩性大或施工时易产生失水裂纹,故在干燥环境中易干裂,并且在碳化后表面易起粉。
(2)快硬硅酸盐水泥、硅酸盐水泥、普通硅酸盐水泥、高铝水泥。因为它们均具有相当高的水化热,易使大体积混凝土产生温度裂纹而使混凝土结构受损。
(3)矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥、复合硅酸盐水泥。因它们的抗冻性均较差。
(4)矿渣硅酸盐水泥。因为其泌水性大、抗渗性差。
(5)快硬硅酸盐水泥、硅酸盐水泥,普通硅酸盐水泥也不太适宜。因为它们的耐软水侵蚀性差。
(6)高铝水泥、快硬硅酸盐水泥、硅酸盐水泥。高铝水泥在湿热处理后强度很低,快硬硅酸盐水泥和硅酸盐水泥在湿热处理后,后期强度有明显的损失。
(7)矿渣硅酸盐水泥、火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥。因为它们的早期强度低,在低温下强度发展更慢。
(8)快硬硅酸盐水泥、硅酸盐水泥、普通硅酸盐水泥。因为它们的抗硫酸盐腐蚀性差,主要是它们水化后含有较多的Ca(OH)2和C3AH6。
(9)高铝水泥。因其在高温高湿条件下,水化产物均会转变为强度很低的,使混凝土强度急剧下降。
(10)火山灰质硅酸盐水泥、粉煤灰硅酸盐水泥。因它们的耐磨性差。
1、普通混凝土由哪些材料组成?它们在混凝土中各起什么作用?
1、普通混凝土的主要组成材料有水泥、砂、石和水,另外还常加入适量的掺合料和外加剂。在混凝土中,水泥与水形成水泥浆,水泥浆包裹在骨料的表面并填充其空隙。在混凝土硬化前,水泥浆起润滑作用,赋予拌合物一定的流动性,便于施工操作;在硬化后,水泥浆则将砂、石骨料胶结成一个坚实的整体。砂、石在混凝土中起骨架作用,可以降低水泥用量,硬化水泥浆的收缩,提高混凝土的强度和耐久性。
2、工程对所使用的混凝土有哪些基本要求?
2、(1)混凝土拌合物应具有与施工条件相适应的和易性;(2)混凝土在规定龄期达到设计要求的强度;(3)硬化后的混凝土具有与工程环境条件相适应的耐久性;(4)经济合理,在保证质量的前提下,节约造价;(5)大体积混凝土(结构物实体最小尺寸≥1m的混凝土)尚需满足低热性要求。
3、两种砂的细度模数相同,级配是否相同?反之,如果级配相同,其细度是否相同?
3、两种砂的细度模数相同,级配不一定相同,反之,如果级配相同,其细度也不一定相同。
4、对混凝土的骨料为什么要提出级配的要求?骨料级配良好的标准是什么?
4、骨料的级配是指骨料大小颗粒的搭配情况。在混凝土中粗骨料的空隙由砂粒填充,砂粒之间的空隙由水泥浆所填充。为尽量减少骨料颗粒之间的空隙,达到节约水泥和提高强度的目的,就必须骨料提出级配的要求。良好的级配的标准是:骨料中含有较多的粗颗粒,并以适当的中颗粒及小颗粒填充其空隙,即可使骨料的空隙率和总面积均较小。使用良好级配的骨料,不仅所需水泥浆量较少,经济性好,而且还可以提高混凝土的和易性、密实度和强度。
5、影响混凝土拌合物的和易性的主要因素有哪些? 改善和易性的主要措施有哪些?
5、影响混凝土拌合物的和易性的主要因素有:(1)水泥浆数量与水胶比;(2)砂率;(3)水泥、骨料等原材料的品种及性质;(4)外加剂;(5)时间及温度;(6)施工工艺。
改善混凝土拌合物的和易性的主要措施为:
(1)改善砂、石(特别是石子)的级配;(2)尽量采用较粗的砂、石;(3)尽量降低砂率,通过试验,采用合理砂率,以提高混凝土的质量及节约水泥;(4)当混凝土拌合物坍落度太小时,保持水灰比不变,适当增加水泥浆用量;当坍落度太大,但粘聚性良好时,保持砂率比不变,适当增加砂、石用量;当拌合物粘聚性、保水性不良时,适当增大砂率;(5)有条件时尽量掺用减水剂、引气剂等外加剂。
6、现场浇注混凝土时,为什么严禁施工人员随意向混凝土拌合物中加水?试分析随意加水对混凝土质量的危害。而混凝土成型后为什么又要浇水养护?
6、混凝土的水胶比是混凝土配合比的一个非常重要的参数,影响到混凝土的强度、体积变形和耐久性等性质。若在混凝土浇注现场,施工人员随意向混凝土拌合物中加水,则增大了混凝土的水胶比,导致混凝土拌合物的粘聚性、保水性降低,硬化混凝土的密实度、强度、耐久性降低,变形增大。而混凝土成型后,混凝土中的水分会不断的蒸发,对混凝土的强度发展不利,为了保证水泥能够正常水化硬化所需的水分,所以要进行浇水养护。
7、某工地施工人员拟采取下列方法提高混凝土拌和物的流动性,请判断是否可行?并解释原因:(1)保持水灰比不变,增加用水量;(2)直接多加水;(3)调整砂率;(4)加入减水剂;(5)提高粗骨料最大粒径;(6)加强振搗。
7、(1)可行。适当增加水泥浆的用量,可提高流动性;(2)不可行。直接多加水改变了混凝土的水胶比,将降低拌合物的粘聚性、保水性,还将影响硬化混凝土的强度、变形及耐久性等一系列性质;(3)可行。采用合理砂率可使拌合物获得良好的和易性;(4)可行。加减水剂可在不增加用水量的条件下提高拌合物的流动性;(5)可行。提高粗骨料最大粒径可使骨料的总表面积减小,需水量减少,即流动性提高;(6)可行。加强振搗可使混凝土拌合物的颗粒产生振动,暂时破坏水泥浆体的凝聚结构,从而降低水泥浆的粘度和骨料之间的摩擦阻力,使拌合物的流动性提高。
8、在测定混凝土拌合物的和易性时,可能会出现以下4种情况,问应如何调整?(1)坍落度小于要求,且粘聚性、保水性尚好;(2)坍落度大于要求;(3)坍落度小于要求且粘聚性较好;(4)坍落度大于要求且粘聚性、保水性差,易产生崩塌现象。
8、(1)坍落度小于要求时,保持水灰胶比不变,适量增加水泥浆的用量。
(2)坍落度大于要求时,保持砂率不变,适量增加砂、石的用量。
(3)坍落度小于要求且粘聚性较好时,保持水胶比不变,适量减小砂率。
(4)坍落度大于要求且粘聚性、保水性差时,保持水胶比不变,适量增大砂率。
9、影响混凝土强度的主要因素是什么?提高混凝土强度主要措施有哪些?
9、影响混凝土强度的主要因素是:(1)水泥强度等级和水灰胶比;(2)骨料的种类、质量和级配;(3)养护温度与湿度;(4)期龄;(5)试验条件如试件尺寸、形状及加荷速度等。
提高混凝土强度的措施主要有:
(1)采用高强度等级水泥和低水胶比;(2)选用质量与级配良好的骨料;(3)掺入合适的外加剂(如减水剂)与掺合料;(4)采用机械搅拌和振捣;(5)采用合适的养护工艺。
10、下列情况对混凝土抗压强度测定结果有什么影响?(1)试件尺寸加大;(2)试件高宽比加大;(3)试件受压表面加润滑剂;(4)试件位置偏离支座中心;(5)加荷速度加快。
10、(1)试件尺寸加大,实验值将偏小;(2)试件高宽比加大,实验值将偏小; (3)试件受压表面加润滑剂,实验值将偏小;(4)试件位置偏离支座中心,实验值将偏小;(5)加荷速度加快,实验值将偏大。
11、混凝土的体积变形有哪些?它们对混凝土有何影响?减小混凝土变形的最主要的措施是什么?
11、混凝土的体积变形包括非荷载作用下的变形与荷载作用下的变形。非荷载作用下的变形主要有:化学收缩、干湿变形、温度变形和碳化收缩。荷载作用下的变形有短期荷载作用下的变形与长期荷载作用下的变形(即徐变)。
混凝土的体积变形过大会引起混凝土开裂,产生裂缝。裂缝不仅会影响混凝土的承载能力,而且还会严重影响混凝土的耐久性和外观。
无论是荷载作用下的变形还是非荷载作用下的变形,产生的原因都是由于混凝土中水泥石的存在所引起的。因此,尽管发生变形的种类不同,但就其如何减小变形的措施来说,却有共同之处,即:(1)合理选择水泥品种:如高强度等级水泥或早强型水泥的细度较大,则收缩较大;掺大量混合材料的水泥干缩较大。
(2)尽量减小水胶比:如采用掺减水剂等措施。这是控制和减小混凝土变形的最有效的措施。
(3)尽可能降低水泥用量:如用活性掺合料取代部分水泥等。
12、当不得不采用普通硅酸盐水泥进行大体积混凝土施工时,可采取哪些措施来保证工程质量?
12、(1)掺入活性掺合料;(2)掺入适量缓凝剂;(3)分段施工;(4)预冷原材料(如搅拌水中加冰等);(5)预埋水管,用冷水降低温度(但温差不可过大)。
13、混凝土在下列情况下均能导致其产生裂缝,试解释原因,并指出防止措施。(1)水泥水化热过大;(2)大气温度变化较大;(4)混凝土早期受冻;(5)混凝土养护时缺水;(6)混凝土碳化。
13、(1)由于水泥水化热大且集中放出,积聚在混凝土的内部,导致混凝土内外温差很大(可达50~70℃),由于温差应力使混凝土开裂。防止措施:在混凝土中掺矿物掺合料取代部分水泥,减少水泥用量,或使用低热水泥。
(2)由于温度变化较大使混凝土产生热胀冷缩变形,导致开裂。防止措施:每隔一段距离设置一道伸缩缝,或在结构中设置温度钢筋等。
(3)由于混凝土中的水分结冰,产生体积膨胀导致混凝土开裂。防止措施:负温下的混凝土施工,要掺早强剂、防冻剂并注意保温养护,以免混凝土早期受冻破坏。
(4)混凝土养护时缺水,使水泥水化反应不能进行,导致混凝土强度较低,结构疏松,形成干缩裂缝。防止措施:浇注成型后加强保湿养护。
(5)碳化会显著增加混凝土的收缩,引起混凝土表面产生拉应力而出现微细裂纹。防止措施:
合理选择水泥品种,掺减水剂降低水胶比,提高混凝土的密实度,加强施工质量控制与养护等。
14、何谓混凝土的耐久性?混凝土的耐久性包括哪些内容?如何提高其耐久性?
14、混凝土抵抗环境介质作用并长期保持其良好的使用性能和外观完整性,从而维持混凝土结构的安全和正常使用的能力称为耐久性。混凝土耐久性主要包括抗渗、抗冻、抗侵蚀、抗碳化、抗碱-骨料反应及防止混凝土中钢筋锈蚀的能力等性能。
提高混凝土耐久性的主要措施为:(1)合理选择水泥品种;(2)选用质量良好、技术条件合格的砂石骨料;(3)采用较小的水胶比和保证水泥用量;(4)掺入适量的减水剂、引气剂及活性矿物掺合料;(5)加强混凝土生产的质量控制,即搅拌均匀、合理浇筑、振捣密实及加强养护。
15、为什么说抗渗性是决定混凝土耐久性的最主要的因素?如何提高混凝土抗渗性?
15、因为混凝土的抗渗性直接影响混凝土的抗冻性、抗侵蚀性、抗碳化性等性质,如果其抗渗性较差,水或侵蚀性液体等介质就容易渗入内部,使混凝土的抗冻性、抗侵蚀性、抗碳化性及抗钢筋锈蚀性降低。所以,抗渗性是决定混凝土耐久性的最主要的因素。
混凝土渗透的原因是由于内部孔隙形成连通的渗水孔道。这些孔道主要来源于水泥浆中多余水分蒸发而留下的气孔、水泥浆泌水所产生的毛细管孔道、内部的微裂缝以及施工振捣不密实产生的蜂窝、孔洞,这些都会导致混凝土渗水。
因此,提高混凝土抗渗性的关键在于提高其密实度和改善孔结构,主要是减少连通孔隙及开裂等缺陷。通常采用的措施有:(1)尽可能降低水胶比,掺引气剂、引气型减水剂或活性掺合料等以改善其内部结构;(2)采用致密、干净、级配良好的骨料;(3)施工振捣密实,加强潮湿养护。
16、何谓碱-骨料反应?混凝土发生碱-骨料反应的条件是什么?如何防止?
16、碱-骨料反应是指混凝土中的碱性氧化物(氧化钠、氧化钾等)与骨料中的活性二氧化硅发生化学反应,生成碱-硅酸凝胶,其吸水后产生体积膨胀(可达3倍以上),导致混凝土开裂破坏的现象。
混凝土发生碱-骨料反应的必要条件是:(1)水泥中碱含量大于0.6%(以等当量Na2O计);(2)骨料中含有活性二氧化硅;(3)有水存在。
防止措施是:(1)采用含碱量小于0.6%的水泥,并控制混凝土中的总碱量不超过3.0kg/m3;(2)控制使用碱活性骨料;(3)掺能抑制碱-骨料反应的活性掺合料;(4)掺引气型外加剂,使混凝土内形成微小气孔,以缓冲膨胀破坏应力;(5)尽量隔绝水。
17、在混凝土配合比设计中为什么要控制混凝土的最大水胶比和最小胶凝材料用量?
17、因为混凝土的耐久性主要取决于组成材料的质量、本身的密实度和施工质量。在原材料及施工工艺一定的条件下,则取决于其密实度。若混凝土密实度较高,则不仅其强度较高,而且抗渗性较高,因而耐久性随之提高。而混凝土的密实度与水胶比有直接关系,与胶凝材料用量有间接关系。水胶比越小,混凝土的密实度越高;胶凝材料用量过大,混凝土的性能会降低,但过小则不能保证混凝土的密实性。因此,在设计混凝土配合比时,为了保证混凝土的耐久性,需要严格控制混凝土的最大水胶比和最小胶凝材料用量。
18、什么叫“粉煤灰效应”? 粉煤灰掺入混凝土中可产生什么作用与效果?
18、粉煤灰掺入混凝土中可产生三大效应,总称为“粉煤灰效应”。即:
(1)活性效应。粉煤灰中所含的SiO2和Al2O3具有化学活性,它们能与水泥的水化产物Ca(OH)2反应,生成类似水泥水化产物中的水化硅酸钙和水化铝酸钙,可作为胶凝材料的一部分而起到增强作用。
(2)颗粒形态效应。粉煤灰中的玻璃微珠在混凝土中可减小组成材料之间的内摩擦力,提高流动性,具有一定的减水作用。
(3)微骨(集)料效应。粉煤灰中的微细颗粒均匀分布在水泥浆内,可填充孔隙和毛细孔,改善了混凝土的孔结构和增大密实度。
粉煤灰掺入混凝土中可以改善混凝土拌合物的和易性及可泵性,降低水化热,提高抗渗、抗化学侵蚀及抑制碱-骨料反应等耐久性。用粉煤灰取代部分水泥后,混凝土的早期强度将随掺入量增多而有所降低,但28d以后的长期强度可赶上甚至超过不掺粉煤灰的混凝土。
19、掺粉煤灰的混凝土配合比设计有哪几种方法,其含义是什么?
19、掺粉煤灰的混凝土配合配合比设计有三种方法,即:等量取代法、超量取代法、外加法。(1)等量取代法:以等质量的粉煤灰取代混凝土中的水泥,主要适用于掺加Ⅰ级粉煤灰、混凝土超强以及大体积混凝土工程。(2)超量取代法:粉煤灰的掺入量超过其取代水泥的质量,超量部分的粉煤灰则取代等体积的细骨料。其目的是增加混凝土中胶凝材料的用量,以补偿由于粉煤灰取代水泥而造成的强度降低。超量系数应根据粉煤灰的等级而定。(3)外加法:掺加的粉煤灰全部用来取代等体积的的细骨料,其目的只是为了改善混凝土拌合物的和易性。
20、高性能混凝土的特点是什么?混凝土达到高性能的技术途径有哪些?
20、高性能混凝土(HPC)是以耐久性和可持续发展为基本要求,并适应工业化生产与施工的新型混凝土。高性能混凝土应具有的技术特征是高抗渗性(高耐久性的关键性能)、高体积稳定性(低干缩、低徐变、低温度应变率和高弹性模量)、适当高的抗压强度、良好的施工性(高流动性、高粘聚性、达到自密实)。高性能混凝土在节能、节料、工程经济、劳动保护及环境保护等方面都具有重大意义,是国内外土木建筑界研究的热点,它是水泥基材料的主要发展方向,被称为“二十一世纪的混凝土”。
混凝土达到高性能的技术途径主要有:
(1)选用技术性能较好的水泥、骨料和水。
(2)采用较低的水胶比(通常要控制在0.38以下),掺入与水泥相容性好的优质高效减水剂(减水率应不低于20%~30%),并有适当的引气性与抗坍落度损失能力。
(3)掺加适量优质的活性磨细矿物掺合料,如硅灰、磨细矿渣和优质粉煤灰等。
(4)改善骨料级配,降低骨料间的空隙率。
(5)控制胶凝材料的用量。
1、新拌砂浆的和易性是指砂浆在搅拌、运输。摊铺时易于流动并不易失水的性质,砂浆的和易
性包括流动性和保水性两方面的含义。流动性用砂浆稠度仪测定,以沉入度(mm)表示,保水性用砂浆分层度仪测定,以分层度(mm)表示。和易性好的砂浆在运输、施工过程中,不易分层、析水;易于在砌筑基底材料上铺成均匀的薄层,并与底面很好地粘结,达到既便于施工又能提高砌体质量的目的。砂浆的和易性主要可通过掺加掺合料或外加剂来改善。
2、配制混合砂浆时,掺入石灰膏或粉煤灰可改善砂浆的保水性,使其易于施工,并可降低成本。
但由于石灰是气硬性胶凝材料,掺入后会降低砂浆的耐水性及强度,而粉煤灰是火山灰质材料,不会降低砂浆的耐水性,并且对提高砂浆的强度有好处。
3、对于不吸水的基底,砂浆强度与混凝土相似,主要取决于水泥强度等级和水灰比;对于吸水
的基底,即使砂浆用水量不同,但因砂浆具有保水性能,经过底面吸水后,保留在砂浆中的水分几乎是相同的,因此,砂浆的强度主要取决于水泥强度等级及水泥用量,而与水灰比没有关系。
4、工程中常采用水泥混合砂浆,可以达到改善砂浆和易性,降低水泥用量的目的。抹面砂浆中掺入纤维材料是为了减少抹面砂浆因收缩而引起的开裂。
5、预拌砂浆的特点是集中生产,质量稳定,施工方便,节能环保。
6 墙体材料
五、问答题
1、烧结普通砖的技术要求主要有哪几项?
1、烧结普通砖的技术要求主要有尺寸偏差、外观质量、强度等级、泛霜、石灰爆裂、抗风化
性能等几项内容。
2、烧结普通转的强度等级与质量等级是如何划分的?
2、烧结普通转的强度等级根据10块砖样的抗压强度平均值和标准值或单块最小抗压强度值划
分为MU10、MU15、MU20、MU25、MU30五个等级;质量等级根据尺寸偏差、外观质量、泛霜和石灰爆裂划分为优等品、一等品、合格品三个等级。
3、烧结多孔砖和烧结空心砖的强度等级是如何划分的?其用途是什么?
3、烧结多孔砖的强度等级根据10块砖样的抗压强度平均值和标准值或单块最小抗压强度值划
分为MU10、MU15、MU20、MU25、MU30五个等级;烧结空心砖的强度等级根据10块砖样的大面和条面的抗压强度平均值和标准值或单块最小抗压强度值划分为MU2.5、MU3.5、MU5.0、MU7.5、MU10.0五个等级。
用途:烧结多孔砖由于其强度较高,在建筑工程中可以代替烧结普通砖,用于6层以下的承重
墙体;烧结空心砖由于孔洞率高,强度较低,具有良好的绝热性能,主要用于非承重墙和框架结构的填充墙等部位。
4、什么是红砖、青砖、内燃砖?如何鉴别欠火砖和过火砖
4、当生产烧结粘土砖时,砖坯在氧化环境中焙烧并出窑时,生产出红砖;如果砖坯先在氧化环
境中焙烧,然后再浇水闷窑,使窑内形成还原气氛,会使砖内的红色高价的三氧化铁还原为低价的一氧化铁,制得青砖。青砖的耐久性比红砖好。
内燃砖是指为了节约原料与燃料在粘土中掺加部分含可燃物的废料,如煤渣、煤矸石、粉煤灰
等,并在烧焙过程中使这些可燃物在砖中燃烧,从而获得内外比较均匀的焙烧温度,用这种方法焙烧的砖叫内燃砖。通常,与外燃砖相比,内燃砖不仅可节约粘土及利用废料,而且体积密度较小,导热系数较低,还可提高强度20%左右。
欠火砖色浅、声哑、强度低;过火砖色深、声脆、强度高、尺寸不规则。这两种砖均为不合格品。
5、烧结普通砖的泛霜和石灰爆裂对砌筑工程有何影响?
5、轻微泛霜就能对清水墙建筑外观产生较大的影响;中等程度泛霜的砖用于建筑中的潮湿部位时,7~8年后因盐析结晶膨胀将使砖体表面产生粉化剥落,在干燥的环境中使用约10年后也将脱落;严重泛霜对建筑结构的破坏性更大。
石灰爆裂对砖砌体的危害很大,轻者影响外观,缩短使用寿命,重者将使砖砌体强度降低甚至
破坏。砖中石灰颗粒越大,含量越多,则对砖砌体强度影响越大。
6、试说明烧结普通砖耐久性的内容。
6、烧结普通砖的耐久性主要包括泛霜、石灰爆裂及抗风化性能等技术指标。
烧结普通砖的抗风化性能通常以抗冻性、吸水率与饱和系数等指标判定。对于严重风化区的建筑用砖,其抗冻性试验必须满足要求;而对非严重风化区的建筑用砖,可不做抗冻试验,但必须满足5h沸煮吸水率和饱和系数两项指标的要求。饱和系数是指砖在常温下浸水24h后的吸水率与5h沸煮吸水率之比。
7、目前所用的墙体材料有那几类?为什么要进行墙体材料改革?墙体材料的发展方向是什么?
7、目前所用的墙体材料有砌墙砖、砌块、建筑板材三大类。砌墙砖类按生产原料可分为粘土砖、
页岩砖、煤矸石砖、灰砂砖、粉煤灰砖和煤渣砖等;砌块类可分为混凝土砌块、硅酸盐砌块、加气混凝土砌块、石膏砌块等;板材类可分为水泥类墙板、石膏类墙板、植物纤维墙板和各种复合墙板等。
我国传统的墙体材料是烧结粘土砖。而烧结粘土砖的生产要毁坏大量的农田,消耗大量的能源,不利于保护农田和生态环境,并且其在性能与施工方面存在自重大、尺寸小、抗震性能差、施工效率低及劳动强度高等缺点,不利于施工的机械化和建筑的工业化。因此,对传统的墙体材料要进行改革。目前烧结粘土砖已被列为城市禁止生产使用的建筑材料(除古建筑修复外)。
当前,墙体材料发展的方向是利用工业废料和地方资源,发展轻质、高强、多功能、大尺寸、节能、节土、利废的新型绿色墙体材料。
8、当往加气混凝土砌块砌筑的墙体上抹砂浆层时,若采用用于烧结普通砖墙体的方法往墙上浇水后即抹,则一般的砂浆往往被加气混凝土吸去水分而容易干裂或空鼓,请分析原因。
8、加气混凝土砌块的气孔大部分是“墨水瓶”结构,只有小部分是水分蒸发形成的毛细孔,肚大口小,毛细管作用较差,故吸水导热缓慢。烧结普通砖淋水后易吸足水,而加气混凝土表面浇水不少,实则吸水不多。用一般的砂浆抹灰易被加气混凝土吸去水分,而易产生干裂或空鼓。故可分多次淋水,且采用保水性好、粘接强度高的砂浆。
7 金属材料习题解答
五、问答题
1、沸腾钢与镇静钢在性能上有何差别?
1、沸腾钢脱氧不充分,碳和有害杂质磷、硫等的偏析较严重,钢的致密程度较差,使钢的冲击韧性和可焊性较差,特别是低温冲击韧性的降低更显著。但由于成本较低、产量较高,可用于一般的建筑结构中。
镇静钢脱氧充分,偏析程度小,质量均匀,结构致密,钢的冲击韧性和可焊性等较沸腾钢好,可用于承受冲击荷载或其它重要的结构。
2、钢结构设计中为什么以屈服点作为强度取值的依据?
2、钢材受力达到屈服点后,塑性变形迅速增大,尽管尚未破坏但已不能满足使用要求。故钢结构设计中一般以屈服点作为强度取值的依据。
3、钢材的屈强比的大小对其使用性能有何影响?
3、屈强比是钢材的屈服点与抗拉强度的比值,屈强比愈小,反映钢材受力超过屈服点工作时的可靠性愈大,因而结构的安全性愈高;但屈强比太小,则反映钢材不能被有效利用,造成浪费。
4、钢材经冷加工强化及时效处理后,其力学性能有何变化?工程中对钢筋进行冷加工及时效处理的主要目的是什么?
4、钢材经冷加工强化后,屈服点提高,抗拉强度不变,塑性、韧性、弹性模量降低,脆性增大。再经时效处理后,屈服点进一步提高,抗拉强度也提高,塑性、韧性进一步降低,脆性还将增大,弹性模量基本恢复。实际使用中应注意其性能的变化。
工程中对钢筋进行冷加工及时效处理的主要目的是为了节省钢材。例如,钢筋经冷拉后,屈服点可提高20%~30%,长度增加4%~10%,一般可节约钢材10%~20%。此外,冷拉还兼有调直和除锈的作用。
5、工地上为何常对强度偏低而塑性偏大的低碳盘条钢筋进行冷拉?
5、由于对钢筋冷拉可提高其屈服强度,而塑性变形能力有所降低,因此工地上常对强度偏低而塑性偏大的低碳盘条钢筋进行冷拉,提高强度,降低塑性,以提高钢筋的利用率。
6、含碳量对建筑钢材的性质有何影响?
6、建筑钢材的含碳量不大于0.8%,当含碳量增大时,钢材的强度、硬度提高,塑性、韧性降低,可焊性降低(含碳量大于0.3%时,可焊性显著下降),冷脆性和时效敏感性增大,耐大气锈蚀性下降。
7、建筑钢材的主要检验项目有哪些?反映钢材的什么性质?
7、建筑钢材的主要检验项目有:(1)拉伸试验:测定钢材的屈服点、抗拉强度和伸长率,反映钢材的力学强度和塑性;(2)冷弯试验:反映钢材在常温下承受弯曲变形的能力,是对钢材质量和焊接质量的一种较严格的检验;(3)冲击试验:测定钢材抵抗冲击荷载的能力,反映钢材的韧性。
8、碳素结构钢随着牌号的增大,其主要技术性质有何变化?
8、碳素结构钢随着牌号的增大,含碳量增大,其强度增大,但塑性和韧性降低,冷弯性和可焊性逐渐降低。
9、为什么Q235号碳素结构钢被广泛应用于建筑工程?
9、Q235号碳素结构钢被广泛应用于建筑工程中,主要是由于它的机械强度较高,塑性、韧性、可焊性及可加工性等综合性能好,且冶炼方便,成本较低。
Q235号钢按质量分为四个等级,其中A、B级为普通质量钢,适合一般的钢结构工程,C、D级为优质钢,适合受动荷载作用的重要焊接结构,其中D级适用于处于低温下的重要结构。
10、低合金高强度结构钢与碳素结构钢相比有哪些优点?
10、低合金高强度结构钢与碳素结构钢相比具有轻质高强,抗冲击性强,塑性、韧性、可焊性和冷加工性好,易于加工与施工,耐腐蚀性、耐低温性好,使用寿命长等一系列良好的综合性能,可节约钢材,具有显著的经济效益。因此,低合金高强度结构钢广泛用作高层及大跨度建筑的主体结构材料。
11、热轧钢筋按什么指标划分牌号?各牌号钢筋的适用范围是什么?
11、热轧钢筋按屈服强度划分牌号,按外形分为光圆钢筋和带肋钢筋两种类型,是建筑工程中用量最大的钢材品种之一。
(1)热轧光圆钢筋分为HPB235和HPB300两个牌号,由Q235和Q300碳素结构钢轧制而成。其强度较低,但塑性、韧性、焊接性和冷加工性好,广泛用作普通中小型钢筋混凝土结构的主要受力钢筋和构造筋等。
(2)热轧带肋钢筋分为普通型(直径6~25mm)和细晶粒型(直径28~50mm)两种,各有三个牌号,即普通型为:HRB335、HRB400、HRB500;细晶粒型为:HRBF335、HRBF400、HRBF500。带肋钢筋加强了钢筋与混凝土之间的握裹力,可有效防止混凝土与配筋之间发生相对位移。
其中,HRB335和HRB400由低合金镇静钢和半镇静钢轧制而成,以硅、锰为主要强化元素,其强度较高,塑性和可焊性均较好,广泛用作大、中型钢筋混凝土结构的主筋,经冷拉处理后也可作预应力钢筋。
而HRB500由中碳低合金镇静钢轧制而成,除以硅、锰为主要合金元素外,还加入钒或钛作为固溶弥散强化元素,使之在提高强度的同时保证塑性和韧性。主要用作预应力钢筋。但其可焊性较差,如需焊接,应采用适当的焊接方法和焊后热处理工艺,以保证焊接接头及其热影响区不产生淬硬组织,不发生脆性断裂。
1、石油沥青的主要技术性质是什么?各用什么指标表示?影响这些性质的因素主要有哪些?
1、石油沥青的主要技术性质是:粘滞性(粘性)、塑性(或延性)、温度敏感性和大气稳定性。
(1)粘滞性(粘性):用针入度或相对粘度表示;(2)塑性(或延性):用延度表示;(3)温度敏感性:用软化点表示;(4)大气稳定性:用蒸发损失及蒸发后针入度比来表示。
2、与传统的沥青防水卷村相比较,合成高分子防水卷材有什么突出的优点?
2、石油沥青的牌号主要是根据针入度、延度和软化点等指标划分的,并以针入度值表示。同一品种石油沥青牌号与其性能之间的关系是:牌号↑→针入度↑(沥青越软,即粘性↓脆性↓)、延度↑(即塑性↑)、软化点↓(即温度敏感性↑)、使用寿命↑(牌号越大,油分、树脂含量越多,老化越慢)。
3、为满足防水要求,防水卷材应具有哪些技术性能?
3、因为在大气因素(热、阳光,空气和水分等)综合作用下,沥青中的低分子量组分会向高分子量组分转化递变,即油分→树脂→地沥青质,油分和树脂逐渐减少,而地沥青质逐渐增多。逐渐失去粘性、塑性而变脆变硬,直至脆裂。这就是沥青的老化。沥青的老化是一个不可逆的过程,使沥青的使用性能变差,寿命缩短。为延缓其老化,可在沥青中掺入橡胶、合成树脂等聚合物以及抗氧化剂等对其进行改性,既能提高沥青的使用寿命,又能改善沥青的使用性能。
4、防水涂料应满足的基本性能有哪些?
4、在建筑屋面防水工程中,选用石油沥青的原则是其温度稳定性要好。一般屋面防水用沥青的软化点应比本地区屋面可能达到的最高温度高20~25℃,亦即比最高气温高50℃左右。一般是用建筑石油沥青和防水防潮石油沥青。
5、密封膏的性能要求有哪些?
5、与传统的沥青防水卷材相比,合成高分子防水卷材具有较高的拉伸强度和抗撕裂强度,断裂伸长率大,耐热性和低温柔性好,耐腐蚀,耐老化等特性,是防水性能优良的新型高档防水材料。
6、怎样划分石油沥青的牌号?牌号大小与沥青主要技术性质之间的关系怎样?
6、沥青基防水材料的缺点是:
(1)性能上:低温脆裂、高温流淌、易起鼓、龟裂、老化、渗漏、寿命短;
(2)其它方面:消耗大量原纸,施工条件差(热施工)、污染环境等。
现代防水材料的发展趋势是:
(1)材料:由以石油沥青为基材向高分子聚合物改性沥青及合成高分子材料方向发展;密封材料由低性能的产品向高弹性、高耐久性产品方向发展;
(2)防水构造:由多层向单层防水发展;
(3)施工方法:由热熔法向冷粘法发展。
1、影响材料导热系数的主要因素是:
(1)材料的物质构成:对于λ而言,金属材料>无机非金属材料>有机材料,结晶结构>微晶结构>玻璃体结构;化学组成和分子结构比较简单的物质比结构复杂的物质有较大的导热系数。(2)孔隙率及孔隙特征:材料的孔隙越大,导热系数越小;孔隙率相同时,孔径越大,连通孔越多,导热系数越大。(3)温度:材料的导热系数随温度的升高而增大。(4)湿度:材料受潮吸水后,会使导热系数增大。(5)热流方向:对于纤维状材料,热流的方向与纤维排列方向垂直时,材料表现出的导热系数要小于平行时的导热系数。
2、绝热材料为什么总是轻质的?使用时为什么一定要防潮?
2、常用绝热材料有下列几类:
(1)无机纤维状绝热材料:如玻璃棉、矿棉、陶瓷纤维等;(2)无机散粒状绝热材料:如膨胀蛭石、膨胀珍珠岩等;(3)无机多孔类绝热材料:如泡沫玻璃、泡沫混凝土、加气混凝土、微孔硅酸钙、硅藻土等;(4)有机绝热材料:如泡沫塑料、硬质泡沫橡胶、植物纤维类绝热板等。
3、试述含水量对绝热材料性能的影响?
3、建筑上常用的吸声材料及其吸声结构有下列几种:
(1)多孔吸声材料:对中频和高频的声音吸收效果较好。
(2)柔性吸声材料:具有密闭气孔和一定弹性的材料,如泡沫塑料等,其吸声特性是在一定的频率范围内出现一个或多个吸收频率。
(3)帘幕吸声体:用具有通气性能的纺织品,安装在离墙面或窗洞一定距离处,背后设置空气层形成,对中、高频都有一定的吸声效果。
(4)悬挂空间吸声体:悬挂于空间的吸声体,可设计成各种形式悬挂在顶棚下面,效果较好。
(5)薄板振动吸声结构:把胶合板、薄木板、纤维板、石膏板等的周边固定在墙或顶棚的龙骨上,并在背后留有空气层而形成。该结构主要吸收低频的声波。
(6)穿孔板组合共振吸声结构:穿孔的各种材质薄板周边固定在龙骨上,并在背后设置空气层而形成。该结构适合吸收中频声波,在建筑中使用普遍。
(7)空腔共振吸声结构:由封闭的空腔和较小的开口所组成,它有很强的频率选择性,在其共振频率附近,吸声系数较大,而对远离共振频率的声波吸收很小。
4、材料的吸声性能用什么指标表示?何谓吸声材料?
4、吸声材料和绝热材料都是多孔材料,但两者在孔的结构上是有区别的。绝热材料要求具有封闭的互不连通的气孔,这种孔越多保温效果越好;而对于吸声材料,则要求具有开放的互相连通的气孔,这种气孔越多,则吸声效果越好。下载本文