视频1 视频21 视频41 视频61 视频文章1 视频文章21 视频文章41 视频文章61 推荐1 推荐3 推荐5 推荐7 推荐9 推荐11 推荐13 推荐15 推荐17 推荐19 推荐21 推荐23 推荐25 推荐27 推荐29 推荐31 推荐33 推荐35 推荐37 推荐39 推荐41 推荐43 推荐45 推荐47 推荐49 关键词1 关键词101 关键词201 关键词301 关键词401 关键词501 关键词601 关键词701 关键词801 关键词901 关键词1001 关键词1101 关键词1201 关键词1301 关键词1401 关键词1501 关键词1601 关键词1701 关键词1801 关键词1901 视频扩展1 视频扩展6 视频扩展11 视频扩展16 文章1 文章201 文章401 文章601 文章801 文章1001 资讯1 资讯501 资讯1001 资讯1501 标签1 标签501 标签1001 关键词1 关键词501 关键词1001 关键词1501 专题2001
2018下半年教师资《高中数学》真题答案
2025-10-02 10:53:16 责编:小OO
文档
2018下半年教师资《高中数学》真题答案

单选选择题

1.答案:D,X-y+z=3

2.答案B.1/2

3.答案D.有界

4.答案:B.Tab/2

5.答案C,(1,2,1)

6.答案A.1

7.答案:C。掌握

8.答案A。同真同假

二、简答题

12.参

评价的主要目的是为了全面了解学生的数学学习历程,激励学生的学习和改进教师的教学,应建立评价目标多元、评价方法多样的评价体系。对数学学习的评价要关注学生学习的结果,更要关注他们学习的过程;要关注学生学习的水平,更要关注他们在数学活动中所表现出来的情感与态度,帮助学生认识自我,建立信心。对于课程标准提出的评价理念可以从以下三个方面理解。

(1)评价目标多元化

新课程提出多元化的评价目标,评价的对象既包括学生,也包括教师。以往的评价更多的关注学生的成就,关注学生的表现,忽视对教师教学过程的评价。通过教学过程和学生学习状况的考查,不只是看学生的表现,还促使教师认识教学中存在的问题,及时改进教学方式,调整教学进度和教学目标。

(2)评价内容性

数学课程的总体目标,对义务教育阶段学生的数学素养提出四个方面的具体要求,包括知识与技能、数学思考、解决问题、情感与态度。评价的具体内容应围绕这些方面展开,形成度、全面性的评价内容体系。对不同内容的评价可以通过设计反映不同内容的问题,如对某一方面知识与技能的评价;也可以在综合的问题情境中进行评价,如在一项调查活动中,对知识的理解与运用、学生解决实际问题的能力以及学生参与投入的态度进行评价;还可以通过对学生平时学习情况的考查来评价。

(3)评价方法多样化

评价中应针对不同学段学生的特点和具体内容的特征,选择恰当有效的方法。对学生知识技能掌握情况的评价,应当将定量评价和定性评价相结合,结果评价与过程评价相结合。不同的评价方法在教学过程中起着不同的作用,不能希望一种评价方法会解决所有的问题。封闭式的问题、纸笔式的评价可以简捷方便的了解学生对某些知识技能的掌握情况,而开放式问题、综合性的、在丰富的情境中的评价有助于了解学生的思考过程和学习过程。

13.参

四、论述题

15.参

信息技术的发展对数学教育的价值、目标、内容以及教学方式产生了很大的影响。数学课程的设计与实施应根据实际情况合理地运用现代信息技术,要注意信息技术与课程内容的整合,注重实效。要充分考虑信息技术对数学学习内容和方式的影响,开发并向学生提供丰富的学习资源,把现代信息技术作为学生学习数学和解决问题的有力工具,有效地改进教与学的方式,使学生乐意并有可能投入到现实的、探索性的数学活动中去。

在数学教学中信息技术可以结合其他多种教学手段,并能起到互补的作用。如不借助信息技术的情况下去利用创设情境的方式去模拟实际情境,学生可能很难想象出相应的实际情景,这里就可以结合信息技术手段直接呈现图片或视频;或者在处理图形的动态变化时,如仅通过板书的形式一步步变化,一是作图比较繁琐,二是连贯性不强,这里就可以结合几何画板等工具直接呈现。

五、案例分析题

16.参

第一问:

第三问:

集合是高中数学必修1第一章节的内容,是进入高中以后最新接触的数学内容,也是现代数学的基本语言,可以简洁、准确地表达数学内容。在本章,学生将学习集合的一些基本知识,感受集合的数学思想方法,用集合语言表示有关数学对象,并运用集合和对应的语言进一步描述第二章的函数概念,为第二章的函数奠定夯实的基础,使得学生能够初步运用函数思想理解和处理生活、社会中的简单问题。

六、教学设计题

17.参

第一问:

导入活动设置:利用多媒体播放一组学生课前收集的图片(旗杆与地面垂直、教学楼与地面垂直等)组织学生观察图片中展示事物之间的位置关系。

提出问题:旗杆与地面、教学楼与地面的位置关系是什么?你能否利用直线与平面根据他们的位置关系画出相应的几何图形?

预设:垂直关系

探究活动一设置:

提出问题:我们又如何定义一条直线与一个平面垂直?能否用一条直线垂直于一个平面内的直线,来定义这条直线与这个平面垂直呢?

利用多媒体动画演示:旗杆与它在地面上影子的位置变化,重点让学生体会直线与平面内不过垂足的直线也垂直

组织学生观察动画的过程中思考如下几个问题

问题1:阳光下,旗杆与它在地面上的影子所成的角度是多少?

问题2:随着时间的变化,影子的位置会移动,而旗杆与影子所成的角度是否发生了变化?

问题3:旗杆AB与地面上不过点B的任意一条直线的位置关系如何?它们所成的角是多少度?

全班交流过后

教师引导学生共同总结:直线与平面垂直的定义,如果一条直线垂直于一个平面内的无数条直线,那么这条直线就与这个平面垂直。

进一步引导学生思考:那么如何判定一条之间与平面的位置关系是垂直关系呢?

探究活动二设置:组织学生思考如何将一张长方形纸片立于桌面?

组织学生猜想:你能猜想出判断一条直线与一个平面垂直的方法吗?

预设:如果一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直。

设计意图:在教学中,充分发挥学生的主观能动性,先安排学生课前收集大量图片,多感知,然后,通过学生动手画图、讨论交流和多媒体课件演示,使其经历从实际背景中抽象出几何概念的全过程,从而形成完整和正确的直线与平面垂直的概念,接下来助学生生活中最简单的经验——折纸,引导学生分析,将“与平面内所有直线垂直”逐步转化为“与平面内两条相交直线垂直”,并以此为基础进行合情推理,提出猜想,使学生的思维顺畅,为进一步的探究做准备。

第二问:

如何折叠与放置一张纸,可以使折痕与桌面垂直?从而寻找到判定直线与平面垂直的方法

引导学生进行折纸环节探究:(1)折痕与平面垂直吗?

(2)如何折,能够使折痕与桌面垂直?

(3).你找的折痕有什么特点?找这样的折痕是为了实现什么目的?

(4)如何放置?

(5)当直线与桌面垂直时,固定折痕一侧的纸片,绕着折痕旋转另一侧纸片,观察折痕与桌面垂直吗?此时折痕与桌面内每一条直线什么关系?

设计意图:通过动手操作、展示、分享,提高学生学习兴趣,同时为学生的进一步探究提供思考方向。

第三问:下载本文

显示全文
专题